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Lecture Goal and Outcome

Goals:
Use the second-order partial derivatives to classify the stationary
points of a function of two variables.
Solve constrained optimisation problems with the method of
substituiton and Lagrange multipliers

Learning Outcome: At the end of the lecture you will be able to
solve problems like the following:

Constrained Problem
A monopolistic producer of two goods, G1 and G2, has a joint cost
function C = 10Q2 + Q2Q1 + 10Q1 where Q1 and Q2 denote the
quantities of G1 and G2 respectively. If P1 and P2 denote the
corresponding prices then the demand equations are
P1 = 50−Q2 + Q1, P2 = 30 + 2Q2 −Q1.
Find the maximum profit if the firm is contracted to produce a total of
at most 16 goods of either type.
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Unconstrained problem
A firm is a perfectly competitive producer and sells two goods G1 and
G2 at $800 and $1000, respectively. The total cost of producing these
goods is given by C = 2Q2

1 + 2Q1Q2 + Q2
2 where Q1 and Q2 denote

the output levels of G1 and G2, respectively. Find the maximum profit
and the values of Q1 and Q2 at which this is achieved.
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Why you should care

Linear regression

Given some data (xt , yy ) t = 1, . . . ,T , we
want to find a line (so α, β ∈ R) y = α+βx
such that, if et := α + βxt − yt (error term
at time t), it minimises the function

L(α, β) =
1
T

T∑
t=1

e2
t Okun’s Law in Macroeconomics: GDP growth is in a lin-

ear relationship with the changes in the unemployment

rate

Does it exists? How can we find it?
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Lecture Plan

Hessian of a function.
Classification of stationary points.
Sufficient conditions for extrema
Optimisation with constraints: Substitution and Lagrange
multipliers.

Recall: Necessary condition
If a function f : D → R has a local extrema at a point (x0, y0) that is an
interior point of D then

f ′x(x0, y0) = 0 and f ′y (x0, y0) = 0

That is (x0, y0) is a stationary point.
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Section 1
Classification of
Stationary points



The Hessian

Given a function f : D → R we define its Hessian as the table (matrix)

H(x , y) :=
[
f ′′xx(x , y) f ′′xy (x , y)
f ′′yx(x , y) f ′′yy (x , y)

]
and we define its determinant as

detH(x , y) = f ′′xx(x , y)f
′′
yy (x , y)− f ′′xy (x , y)f

′′
yx(x , y)

For regular functions one has that f ′′xy = f ′′yx , so we could write

detH(x , y) = f ′′xx(x , y)f
′′
yy (x , y)− (f ′′xy (x , y))

2

Examples: Calculate the Hessian and its determinant for
f (x , y) = −(x2 + y2), f (x , y) = x2 + y2 and f (x , y) = x2 − y2.
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Second derivative test

Second derivative test
Let (x0, y0) be a stationary point of f . Recall that

detH(x0, y0) = f ′′xx(x0, y0)f ′′yy (x0, y0)− f ′′xy (x0, y0)f ′′yx(x0, y0)

1 If detH(x0, y0) > 0 and f ′′xx(x0, y0) < 0, then f has a local
maximum at (x0, y0).

2 If detH(x0, y0) > 0 and f ′′xx(x0, y0) > 0, then f has a local
minimum at (x0, y0).

3 If detH(x0, y0) < 0 then f has a saddle point at (x0, y0).
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f (x) = −x2 f (x) = x2 f (x) = x3

f ′(0) = 0

f ′′(0) = −2 < 0
Local Maximum

f ′′(0) = 2 > 0
Local Minimum

f ′′(0) = 0
f ′′(x) < 0 if x < 0
f ′′(x) > 0 if x > 0

−x2 − y2

H =

[
−2 0

0 −2

]
detH = 4 > 0
Local Maximum

x2 + y2

H =

[
2 0
0 2

]
detH = 4 > 0
Local Minimum

x2 − y2

H =

[
2 0
0 −2

]
detH = −4 < 0

Saddle Point

f ′x(0,0) = 0
f ′y (0,0) = 0
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Example

(2015) Let F (x , y) = x4 + y4 − 36xy . Find all the stationary
points for this function and determine whether they are local
maximum, minimum or saddle points.
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Section 2
Sufficient conditions for

extrema



Convexity

We say that a set D ⊂ R2 is convex, if for every pair of points
X ,Y ∈ D the segment [X ,Y ] joining them in contained in D.

Not convex Convex

A function is convex/concave if the region above/below its graph is a
convex set.
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Sufficient conditions

Second derivative test
Assume that:

D is a convex domain;
(x0, y0) is an interior stationary point of f
and that for all (x , y) ∈ D

detH(x , y) = f ′′xx(x , y)f
′′
yy (x , y)− f ′′xy (x , y)f

′′
yx(x , y) ≥ 0

1 If f ′′xx(x , y) ≤ 0 and f ′′yy (x , y) ≤ 0 for all (x , y) ∈ D, then f is
concave on D and (x0, y0) is a maximum point for f in D.

2 If f ′′xx(x , y) ≥ 0 and f ′′yy (x , y) ≤ 0 for all (x , y) ∈ D, then f is
convex on D and (x0, y0) is a minimum point for f in D.
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How can we recall the theorem?
f (x) = −x2 f (x) = x2

x = 0 is a stationary point: f ′(0) = 0

f ′′(x) = −2 < 0 (Concave)
Maximum

f ′′(x) = 2 > 0 (Convex)
Minimum

f (x , y) = −(x2 + y2) f (x , y) = x2 + y2

(0,0) is a stationary point f ′x(0,0) = f ′y (0,0) = 0

H =

[
−2 0

0 −2

]
detH = f ′′xx f ′′yy − (f ′′xy )

2 ≥ 0
f ′′xx(x , y) ≤ 0 f ′′yy (x , y) ≤ 0
(Concave) Maximum

H =

[
2 0
0 2

]
detH = f ′′xx f ′′yy − (f ′′xy )

2 > 0
f ′′xx(x , y) ≥ 0 f ′′yy (x , y) ≥ 0
(Convex) Minimum
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Example

Show that the function

f (x , y) = 2x2 + 4xy + 3y2 − x − 2y

is convex and has a global minimum on R2.
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Application:Linear regression

Given some data (xt , yy ) t = 1, . . . ,T , we
want to find a line (so α, β ∈ R) y = α+βx
such that, if et := α + βxt − yt (error term
at time t), it minimises the function

L(α, β) =
1
T

T∑
t=1

e2
t

Define µx = 1
T

∑T
t=1 xt µy = 1

T

∑T
t=1 yt and

σxx =
1
T

T∑
t=1

(xt − µx)
2, σyy =

1
T

T∑
t=1

(yt − µy )
2,

σxy =
1
T

T∑
t=1

(xt − µx)(yt − µy )

Assume that σxx > 0 (otherwise, all the points lie on a vertical line)
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One can show (afer some calculations) that L(α, β) =
= α2 + µ2

y + β2µ2
x − 2αµy − 2βµxµy + 2αβµx + β2σxx − 2βσxy + σyy

Also that the unique stationary point is

α̂ = µy −
σxy

σxx
µx , β̂ =

σxy

σxx

Note that

H(α, β) =

[
2 2µx

2µx 2µ2
x + 2σxx

]
⇒ detH(α, β) = σxx > 0

2 = H ′′
αα > 0 2µ2

x + 2σxx = H ′′
ββ > 0

Since R2 is convex, by the previous theorem, L is convex and the
stationary point is a global minimum for L(α, β).

y = α̂+ β̂x is called the regression line.
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Section 3
Constrained
Optimisation



The EVT

1D case
Let f : [a,b]→ R differentiable
[a,b] is closed and bounded

1 There exists xm, xM ∈ [a,b]
such that for all x ∈ [a,b]

f (xm) ≤ f (x) ≤ f (xM)

2 The Maximum/minimun
points are either

1 A stationary point inside
[a, b]; or

2 A point in the border
(either a or b).

2D case
Let f : D → R differentiable
D is closed and bounded

1 There exists xm, xM ∈ D
such that for all x ∈ D

f (xm) ≤ f (x) ≤ f (xM)

2 The Maximum/minimun
points are either

1 A stationary point inside
D; or

2 A point in the border (is
a curve).

a b
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Optimisation problem

The strategy is essentially the same one as for functions in one
variable.
Given f : D → R, where D is closed and bounded.

1 Make a list consisting of
Stationary points inside D;
Extremal "Boundary points"

2 Evaluate f at all the points in the list
3 Find the largest/smallest value

To find the extremes in the boundary we need to describe
it/parametrise it.
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Example

(2018) A quantity C is determined by inputs s, t , according to
the formula C(s, t) = st(s + t − 1). Find the maximum and
minimum possible values for C subjected to the constraints s ≥
0, t ≥ 0 and s + t ≤ 2.

Lets start by visualising the domain D:

t = 0

s = 0

t + s = 2

D

L1

L2
L3

The border of D consist of three
pieces:

1 L1 is the set of points (s, t)
such that t = 0, s ∈ [0,2];

2 L3 is the set of points (s, t)
such that s = 0, t ∈ [0,2];

3 L2 is the set of points (s, t)
such that t = 2− s, s ∈ [0,2].
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Stationary points inside D

Recall that C(s, t) = st(s + t − 1)
The partial derivative are:{

C′
s(s, t) = t(2s + t − 1) = 0⇔ t = 0 or 2s + t − 1 = 0

C′
t (s, t) = s(2t + s − 1) = 0⇔ s = 0 or 2t + s − 1 = 0

So the stationary points are those (s, t) satisfying:
1 t = 0 = s i.e. (0,0).
2 t = 0 and 2t + s − 1 = 0 i.e. (1,0);
3 s = 0 and 2s + t − 1 = 0 i.e. (0,1);
4 2s + t − 1 = 0 and 2t + s − 1 = 0 i.e. (1/3,1/3);

Only (s, t) = (1/3,1/3) lies inside D.
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On the Border

Recall that C(s, t) = st(s + t − 1)
We look for the maximum/minimum values of the function when it is
restricted to the border (i.e. C(s, t) when (s, t) belong to the border):

Alongside L1 (t = 0, s ∈ [0,2]) C(s, t) = 0. The function is
constant on L1;
Alongside L3 (s = 0, t ∈ [0,2]) C(s, t) = 0. The function is
constant on L3;
Alongside L2 (t = 2− s and s ∈ [0,2])

C(s, t) = C(s,2− s) = s(2− s)(2 + (2− s)− 1) = s(2− s)

So we need to optimise a function of one variable on s ∈ [0,2].
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C(s, t) = s(2− s), s = s, t = 2− s, s ∈ [0,2],

We proceed by
1 Making a list of:

Stationary points inside [0, 2]:

d

ds
(s(2− s)) = 2− 2s = 0⇔ s = 1;

(Extremal) Boundary points: s = 0, s = 2;
2 Evaluate the function in those points

For s = 0 (so t = 2): C(0, 2) = 0;
For s = 2 (so t = 0): C(2, 0) = 0;
For s = 1 (so t = 1): C(1, 1) = 1(2− 1) = 1

The maximum value of C on L2 is 1 and it is attained at (1,1);
The minimum value of C on L2 is 0 and it is attained at (0,2) & (2,0).
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Evaluation and comparison
The list of points we have are

C(1,1) = 1;
C(0, t) = 0, t ∈ [0,2];
C(s,0) = 0, s ∈ [0,2];

C(1/3,1/3) =
1
3

1
3 (

1
3 + 1

3 − 1) = − 1
27

As a result of the analysis above we have that:
The maximum value of C on the domain D is 1 and it is attained
at the points (1,1);
The minimum value of C on the domain D is −1/27 and it is
attained at (1/3,1/3).
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Lagrange Multipliers

In some cases as above, we need to solve an optimisation problem
C(x , y) under some constrains of the form

g(x , y) = 0,

Example: In the previous example, we had to optimise C(s, t)
constrained to s + t − 2 = 0.

In that case, it was easy to write t as a function of s (t = 2− s), plug
that in the function C(s, t) and treat that as a function in one variable.
This is called the substitution method.

In general, one can’t explicitly write one of the variables as a function
of the other, but one can try by the method of Lagrange Multipliers
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Lagrange multipliers method

Optimise the function f (x , y) with the constraint g(x , y) = 0.
1 Construct the Lagrangian function

L(x , y , λ) = f (x , y)− λg(x , y),

2 The candidates for relative extrema occur at the solutions of
L′

x(x , y) = 0
L′

y (x , y) = 0
g(x , y) = 0

Be careful! The method only produce candidates for relative
extrema. In every problem we’ll need to make sure that those
extrema exist.
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Example

Maximise f (x , y) = x2 − y2 subject to the constraint 2x + y − 5 = 0.
Lagrange method: We construct the Lagangian:

L(x , y) = x2 − y2 + λ(2x + y − 5),

We (try to) solve the system of 3 equations an 3-unknowns (x , y , λ):
0 = L′

x(x , y) = 2x + 2λ
0 = L′

y (x , y) = −2y + λ

0 = 2x + y − 5
⇔


0 = 2x + 2λ
0 = − 2y + λ

5 = 2x + y

From the first and second rows we have x = −λ, y = λ/2,
Plugging this in the third one yields

5 = 2(−λ) + (λ/2) = −3λ/2⇔ λ = −10/3

Hence

x = 10/3, y = −5/3 f (10/3,−5/3) = (100− 25)/9 = 25/3
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Graphically

Looking at the level curves and the graph of f , we can see that the
function, constrained to the line, has a global maximum at that point.
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Thank you for your attention!


