

Course MM1005

Lecture 14: Matrices and Linear Systems-II

Sofia Tirabassi

tirabassi@math.su.se

Salvador Rodriguez Lopez

s.rodriguez-lopez@math.su.se

Questions?

Lecture Goal and Outcome

Goals:

- Calculate determinants of Order 2 and 3 by cofactors.
- Determine whether a matrix is invertible or not and calculate its inverse.
- Determine the number of solutions of a linear system of equations.

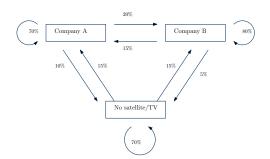
Learning Outcome: At the end of the lecture you will be able to solve problem like the following:

Determine for which values of the parameter a, the system

$$\begin{cases} ax + y + 3z = 2 \\ 2x + y + az = 2 \\ 2x + y + 3z = a \end{cases}$$

has exactly one solution, no solution, or infinitely many solutions.

Why you should care



A Consumer Preference Model

Two competing companies offer satellite television service to a city with 100000 households. The figure shows the changes in satellite subscriptions/year.

Company *A* now has 15,000 subscribers and Company *B* has 20,000 subscribers. How many subscribers will each company have in one year?

Inverse of a square matrix

A matrix with the same amount of rows and columns is called a **square matrix**.

We say that a $n \times n$ matrix A is **invertible** if there exists a matrix B such that

$$AB = BA = I_n$$

where I_n is the identity matrix

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

If that matrix exists, it is unique, is called the **inverse** of A, and it is denoted by A^{-1} .

Determinant of a matrix

The linear equation ax = b has a unique solution for all b if, and only if, a^{-1} exists (a is invertible), which is equivalent to $a \neq 0$. Recall that a^{-1} is the only real number such that

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$

For a given $a \in \mathbb{R}$, the 1 × 1 matrix [a] is invertible if $\det[a] = a \neq 0$ and in that case

$$[a]^{-1} = [a^{-1}],$$

What can we say for n = 2?

Given a 2 × 2-matrix
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 we define its determinant as det $A = a_{11}a_{22} - a_{21}a_{12}$.

Example: If
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$ then $B = A^{-1}$ because

$$A \cdot B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = B \cdot A$$

Moreover det $A = 1 \cdot 3 - 2 \cdot 1 = 3$, det B = ?

A 2 \times 2-matrix A is invertible, if and only if, det $A \neq 0$

Note that if *A* is invertible, for all vector $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, the linear system of equations Ax = b has a unique solution

$$Ax = b \Leftrightarrow A^{-1}Ax = A^{-1}b \Leftrightarrow x = A^{-1}b$$

Example

If $det(A) \neq 0$, the linear system Ax = b has a unique solution: $x = A^{-1}b$.

If $det(A) \neq 0$, the linear system Ax = b has either no solution, or an infinite number of solutions.

(we can use Gaussian elimination to find the solution(s))

How can we find the inverse?

If det $A \neq 0$, we want to find B such that

$$A \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow A \cdot \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \& A \cdot \begin{bmatrix} b_{12} \\ b_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

So, we need to solve two systems of Linear equations with the same independent coefficients (A)! So we can run the Gauss-elimination at the same time by writting:

$$[\mathbf{A} \,|\, \mathbf{I}] = \left[\begin{array}{cc|c} a_{11} & a_{12} & 1 & \mathbf{0} \\ a_{21} & a_{22} & 0 & 1 \end{array} \right]$$

Example By making $-2R_1 + R_2 \rightarrow R_2$ and $-R_2 + R_1 \rightarrow R_1$

$$\left[\begin{array}{cc|cccc} 1 & 1 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{array}\right] \sim \left[\begin{array}{cccccc} 1 & 1 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{array}\right] \sim \left[\begin{array}{cccccc} 1 & 0 & 3 & -1 \\ 0 & 1 & -2 & 1 \end{array}\right]$$

So we have that

$$A^{-1} = \left[\begin{array}{cc} 3 & -1 \\ 2 & 1 \end{array} \right]$$

We could have used the same principle to find a 2×4 -matrix M such that

$$A \cdot M = \left[\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & 3 & 5 \end{array} \right]$$

wit the same row operations

$$\left[\begin{array}{ccc|cccc} 1 & 1 & 1 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 & 3 & 5 \end{array}\right] \sim \left[\begin{array}{ccc|cccc} 1 & 0 & 3 & -1 & 0 & 1 \\ 0 & 1 & -2 & 1 & 1 & 1 \end{array}\right]$$

Square matrices n = 3 and higher

Given a
$$3 \times 3$$
-matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ we define
$$\det A := a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

A similar definition can be given in any dimension $n \ge 3$. We will restrict ourselves to n = 1, 2, 3 in this course.

A $n \times n$ -matrix A is invertible, if and only if, det $A \neq 0$.

If $det(A) \neq 0$, the linear system Ax = b has a unique solution: $x = A^{-1}b$.

If $det(A) \neq 0$, the linear system Ax = b has either no solution, or an infinite number of solutions.

The same method as for n = 2 works in any dimension. E.g.

Determine whether the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ is invertible, and if so, calculate its inverse:

, calculate its inverse

 $\det A =$

$$[\mathbf{A} \mid \mathbf{I}] = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

$$\sim \begin{bmatrix} -2R_2 + R_1 \rightarrow R_1 \\ -2R_2$$

Aug. 2013

For which values of *c* the system of equations below has a unique solution, infinitely many, or no solutions at all?

$$\begin{cases} x + 2y - 3z &= 4\\ 3x - y + 5z &= 2\\ 4x + y + (c^2 - 14)z &= c + 2 \end{cases}$$

2019

Let A be the matrix
$$\begin{bmatrix} 2 & 0 & 2+k \\ 3 & 1 & 0 \\ k & 0 & -2 \end{bmatrix}$$

- Find det A as a function of k;
- Show that A is always invertible for any value of k;
- **⑤** Find the minimal and maximal value det *A* can take, for $k \in [-2, 2]$.

Thank you for your attention!

