GREEN’S FORMULA, LINEAR CONTINUITY,
AND HAUSDORFF MEASUREC(")

BY
ROBERT M. FESQ

1. Introduction. Let A(x,y) and B(x,y) be defined on a square Q. If one
makes strong enough assumptions about A(x,y) and B(x,y) and their partial
derivatives, the Green’s formula

(1) LQ Adx + Bdy = fL (B, — A))dxdy

holds. Cohen [2] and Shapiro [6] have shown that (1) holds with much weaker
than the usual assumptions on the functions concerned. In each of these papers
(B, — A4,) is assumed to be in L,(Q) and the partial derivatives (with respect to
both variables) of the functions are assumed to exist except on certain sets.
Cafiero [1], in an investigation of a different aspect of the problem, has shown
that a similar result holds. The sets where the partial derivatives fail to exist are
not the same in each of these papers. In this paper, we will give a proof of (1)
which includes all of these results, at the same time we will weaken the continuity
requirements on the functions A(x, y) and B(x, y).

In the fourth section, we will give an example which shows that the assumptions
we make cannot be weakened substantially.

2. Preliminaries. By a square or a rectangle, we will always mean a closed
square or rectangle with its sides parallel to the coordinate axes. We will denote
the length of the longest side of a rectangle R with s(R).

We will write |E | for the Lebesgue measure of E, using the same notation for
both one-dimensional and two-dimensional measure, and we will write 6(E) for
the diameter of E.

We will use H(p,E) to denote the Hausdorff p-dimensional measure of E.
That is H(p,E) = sup,inf { X 8(0,)"; 6(0;) < e} where each O; is open and
UJO: > E. H(E) = H(1,E).

DerFINITION. A function f(x, y) is linearly continuous at a point (a, b) if f(a, y)
is continuous at b and f(x,b) is continuous at a. f(x,y) is linearly continuous
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on R if it is linearly continuous at each point of R. (We consider functions which
are linearly continuous except perhaps at the points of a set E with H(E)=0.
Goffman considers a more general class of linearly continuous functions in [3],
where he shows that such functions are measurable.)

When discussing a particular pair of functions, we will use the phrase ‘(1)
holds in a neighborhood of (a, b)’” to mean that there is an open neighborhood
G of (a, b) such that (1) holds for every rectangle contained in G .

RemARKk 1. If A(x,y) and B(x,y) are bounded and linearly continuous on
a rectangle R and if (B, — A4,) is in L,(R), then in order to show that for some
constant K

lf Adx + Bdy — ff (B,— A)dxdy | < K,
OR R

it is sufficient to show that the same inequality holds for every rectangle con-
tained in int(R).

ReEMARK 2. Under the conditions of Remark 1, in order to show that (1)
holds for R, it is sufficient to show that (1) holds in a neighborhood of each
point of int(R).

Remark 1 follows immediately from the dominated convergence theorem.
To see that Remark 2 is true let R’ be any rectangle contained in int(R). Since
R’ is compact and (1) holds in a neighborhood of each point of R’, if we sub-
divide R’ into small enough rectangles, each is contained in a neighborhood in
which (1) holds. It follows that (1) holds for R’ and hence, by Remark 1, (1)
holds for R.

LemMA 1. If E is a closed subset of a square Q, H(E) is finite, and m is
any positive integer, E can be covered with a finite number of nonoverlap-
ping rectangles R; such that s(R;) < 1/2", Zs(Rj) < 8(H(E) + 1), and
'URJI < 8(H(E) + 1)/2™, and such that there is a point of E on each side of
each R;.

Proof. Assume for sim plicity that s(Q) <1, and divide Q into four equal
nonoverlapping squares Q%, k=1,..-,4. Proceeding in this way construct a
sequence of subdivisions of Q into nonoverlapping squares Qf, k=1, --,4", with
(O =1/2".

Since H(E) is finite and E is closed, there is a finite open covering of E with
sets O0;, such that 6(0,) < 1/2"*' and X6(0,) < (H(E) + 1). For each 0;, we
can find a k(i) such that 1/2"?*!1 < §5(0) <1/2°?, It is clear that O, is con-
tained in a square S; which is the union of four squares of the k(i)th subdivision
of Q, and that s(S;) = 2/2*? < 45(0,) < 2/2™.

We may assume that s(S)) 2 s(S;.,) and set Ty =S, and T;=S;— |Ji"'S;
to obtain a new covering of E with nonoverlapping sets T;, each of which
is the union of at most four nonoverlapping sets of the k(i)th subdivision of Q.
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If we let J; denote the squares which make up the sets T; and contain points
of E, and if we let R; be the smallest rectangle containing J; NE, we obtain
a covering of E with nonoverlapping rectangles. Moreover there is a point of E
on each side of each R;, s(R;) < s(S,) /2 < 1/2", Ts(R ) < X4s(S)/2 < 8(H(E)+1)
and finally |[ JR;| £ Xs(R))? < 8(H(E) + 1) /2.

LeMMA 2. Let A(x,y) be linearly continuous on a square Q and let ¢ and 6
be positive constants. Then if E is the set of points (x,y) of Q such that
ly’ - y”l < 0 implies that ,A(x,y’) - A(x,y”)] < ¢, E is closed.

Proof. Let Q =[a,b] X [c,d], and let F be the set of points x of [a,b] such
that |y’ — y”| < & implies that | A(x,y’) — A(x,y")| S e. If x’ is not in F, there
isa y and a y, with |y’ — y"| < 6 and |A(x",y") — A(x",y")| > €. Since A(x,y")
and A(x,y") are continuous, this inequality prevails in a neighborhood of x'.
Thus, [a,b] — F is open, Fis closed, and E = F x [c,d] is closed.

LemMMA 3. Suppose that R is the union of a finite number of rectangles, that
A(x,y) and B(x,y) are bounded by M and linearly continuous on R, that
(B, —A4,) is in Ly(R), and that (1) holds in a neighborhood of each point of
int(R) except perhaps the points of E Nint(R). Then if E is closed and
HENint(R) £ a,

” Adx + Bdy — ff (B, — A,)dxdy | < 4Ma.
OR R

Proof. We may assume that R is a square, and by Remark 1, we need only
show that the inequality holds for every square contained in int(R). We may
thus assume that E is a closed subset of R, and that H(E) < «.

Let 0 <e<1 be given.

Since (B, — A4,) is in L,(R), there is an integer N such that |C| <(@+1/N
implies that [[c|B, — 4,| dxdy <e.

Since E is closed and H(E) < a, we can cover E with a finite number of open
sets O; such that 6(0;)) < 1/N and X8(0;,) < (x + &). Then, for each O; we
can find a square Q; with O, c Q; and &(0;) = s(Q;). We then have
EclJQ:, Xs(@)<(a+e and [[JO,|<(@+1)/N.

It is clear that T=R — UQ, can be written as the union of a finite number
of nonoverlapping rectangles none of which contain points of E. Applying Re-
mark 2 to each of these rectangles we obtain

f Adx + Bdy —jf (B, — A4,)dxdy = 0.
oT T

Since || J@i| < (@ + 1)/N, we have

Iﬂ (B, — A,)dxdy | <e,
v,



108 R. M. FESQ [June

and since A(x, y) and B(x, y) are bounded by M we also have
lf Adx+del < 4M T 5(0) < 4M(x + ¢).
a(vQ)

By combining the last three inequalities we obtain

IfAdx+de-—- ff (B,—A))dxdy | < 4M(x +¢) + ¢.
0 R

R

Since ¢ was arbitrary this completes the proof.

3. THEOREM. Let A(x,y) and B(x,y) be bounded on a square Q and linearly
continuous at each point of Q — D, where D is closed. Let (B, — A,) be in L(Q),
and let the partial derivatives of A(x,y) and B(x,y) be finite at each point of
Q- UE,,, where each E,, is closed. Then, if H(D) =0 and H(E,) < oo for eachn,

J Adx + Bdy = ff (B, — 4,)dxdy.
o2 Q

Proof. Assume, first, that D is empty.

By Remark 1, we can assume that the conditions of the theorem are met in
an open set containing Q, and if we let a point (x, y) of Q be in J if (1) does not
hold in any neighborhood of (x, y), J is a closed set and, by Remark 2, we need
only show that J is empty.

For each positive integer N, let (x,y) be in Fy if

|A(x + h,y) — A(x,y)| £ N|h|,
| A(x,y + k) — A(x,»)| £ N|k|,
|B(x + h,y) = B(x,y)| £ N|h|,
| B(x, y + k) — B(x,y)| < N |k|,

whenever |h| <1/N, |k| <1/N, and all the quantities are defined. The sets
Fy are closed [8, p. 80], and Q, with the exception of the sets E,, is covered
by UF ~ - We may, therefore, write J as the union of the sets J N Fy and the sets
JNE,. If J is not empty, it follows from the Baire Category Theorem that there
is an open square I’ such that I' N J is not empty and either () FyNI'oJ NI’
for some N or (b) E,NI'>J NI’ for some n.

The arguments given by Cohen [2] can be carried over to linearly continuous
functions to show that (a) is impossible.

In order to show that (b) cannot occur, let I be any closed square contained
in I'. We will show that (1) holds for I.

Let £ > 0 be given.
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Let a point (x,y) of I be in Gy if whenever (x,y’) and (x, ") are in I and
|y" =yl <1/2" then | A(x,y") — A(x,y")| S & and |B(x,y") — B(x,y")| < &, and
whenever (x’,y) and (x",y) are in I with lx’ - x”| < 1/2¥ then
IA(x’,y) - A(x”,y)l <eand IB(x’,y) - B(x”,y)l =<¢. By Lemma 2, the sets Gy
are closed, and it is clear that I is covered by Usz- It is also clear that
G, <G, c Gz c:--. We can thus conclude that the sets Gy NE, are closed,
that I NE, o Gy NE,, and finally that H(I NE,) = limy H(E, N Gy).

Thus, if we choose M sufficiently large, we have H((I NE,) — Gy) <&, and
since (B, —A4,) is in L,;(Q) we can also choose M large enough so that
[ fc| B. — A,| dxdy < & whenever |C| < 8(H(E, N I) + 1)/2%.

Applying Lemma 1, we can find a finite number of nonoverlapping rectangles
R; which cover E, NGy, and which satisfy

S(Rj) < 1/2M’
);(Rj) < 8(H(E, NGy) + 1),
[UR;| < 8(H(E, N Gp) + 1)[2M < 8(H(E,NI)+1)/2M

and such that each R; has a point of G, on each of its sides.
Let R; = [a,b] x [¢c,d], and let (x’,d) and (x”, c) be points of G, which occur
on the sides of R; parallel to the x-axis. Since s(R;) <1 /2™, we have

| 4Gx,d) — A(x,0)| < [A(x,d) — AKX, )| + | A, d) — A", d) |
+ | AG", d) — A", )| + | A", €) — A(x,0)| £ 4s.
This implies that

b
f |A(x,¢) — A(x,d)|dx < (b - a)4e < 4es(R)).
By combining this with a similar inequality for B(x, y) we obtain
| f Adx+de} < 85(R))e
oR;
and finally
o) ] j Adx + de‘ < 8 Is(R))e < 64(H(E,) + De.
a(UR j)

Since || J R;| < 8(H(E,) + 1)/2¥, we also have

10) | f LaR!(Bx—A,)dxdyl <e.

The interior of the set T=1I— | JR; can be written as the union of a finite
number of open rectangles, and since (1) holds in a neighborhood of each point
of int(T) except perhaps the points of E,, and since
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H(lnt(T) N En) =<= H((I nEn) - GM) é €,
we can apply Lemma 3 to cl(T) to obtain

@ ” Adx + Bdy — ﬂ (Bx—A,)dxdy| < 4Ke,
oT T

where K is the bound of A(x, y) and B(x,y).
By combining (2), (3), and (4), we obtain

| Adx + Bdy — f f (B, — A,)dxdy | < (64(H(E,) + 1) + 1 + 4K)e.
oI I

Since ¢ was arbitrary this implies that (1) holds for I, which in turn implies
that (b) is impossible. We thus conclude that J is empty, and hence that (1) holds
for Q if D is empty.

Suppose D is not empty, and that 1 > ¢ > 0 is arbitrary.

Since (B, — 4,) is in L,(Q), if N is sufficiently large,

l fc (B,,—A,)dxdyl <e,

whenever |C| < 1/N

Since H(D) =0, and D is closed, we can cover D with a finite number of open
squares R;, with s(R)) <1/N, Xs(R)<e, and || JR;| <¢/N.

We thus have

”f% (Bx—A,)dxdyl <e,

and

z | f Adx+de| < 4K X s(R)) < 4Ke,
Ry

where K is the bound on A(x, y) and B(x,y).
The set T=Q — | JR; can be written as the union of a finite number of non-
overlapping rectangles to which the first part of the proof applies. Thus

Adx + Bdy — ff (B, — A))dxdy = 0.
aT T

By combining the last three inequalities, we obtain

” Adx + Bdy — ff (B, — A))dxdy | < (4K + De.
(7] Q

Since ¢ was arbitrary, (1) holds for Q@ and the proof is complete.
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4. Example. In this section we will give an example which shows that the
conditions given in the theorem can not be weakened substantially. The example
given by Maker [4], can be used to show that if B, or A4, fails to exist on a closed
set which has Hausdorff dimension one but which is not o-finite then the equality
(1) may fail. By modifying the example given by Tolstoff [7], we will show that
even when B, and A, exist everywhere, some assumption must be made on the
partial derivatives B, and A, which do not appear in (1), and that the assumption
H(1 + ¢,E) =0, on the set E where they fail to exist, is not sufficient. We will
use the same example to show that the condition H(D) =0 on the set of points
where the functions involved are not linearly continuous can not be weakened.
(In particular, it is not sufficient to assume that A(x, y) and B(x,y) are continuous
functions of x for almost every y and continuous functions of y for almost every x.)

Let

g(x,a,b) = 1 + cos2n [’;—:—Z - %] , a<x<b,
g(x,a,b)= 0 otherwise,
and let

h(x,y;(a,b) x (¢,d)) = g(x,a,b)g(y,c,d).

Let C be a Cantor perfect set, and call each of the intervals removed in the
nth step of the construction of C a A,.
Define f(x,y) on Q@ =[0,1] x [0,1] by

f(x,y) = 4h(x,y;A, x A,) [4"| A, on A, x A,
= —8h(x,y;A, X A,_) [4"|A,||As-y| on A, x A,_,
=0 otherwise.
Finally, define A(x,y) and B(x,y) on Q by

ACx,y) = fo G u)du and B(x,y) = L " fu,y)du.

It is clear that B, and A, exist and are equal to f(x,y) everywhere, so that
(Bx—4,)=0.

We can notice that if (x, y) is in a rectangle A, x [0,1] or a rectangle [0,1] x A,.
A(x, y) is continuous and A, exists and is finite. A similar observation can be made
for B(x,y) and B,.

If we let M, denote the maximum of the absolute value of A(x, y) on a rectangle
A, x [0,1], a close examination of A(x,y) shows that M, =8 /4"| A, | . Since
A(x,y)=0 on C x [0,1], A(x,y) will be continuous at points of C x C (and
hence on Q) provided Lim,M, =0, which will be the case if |A,| = 1/r" with
r < 4. On the other hand if r = 4, we will have Lim, M, = 8 so that A(x, y) will
be bounded. A similar observation can be made for B(x, y). In the first case, we
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can choose r <4 in such a way that H(1 +¢C x C)=0. If r =4, we have
o > H(C x C)>0.
In order to complete our discussion, we must show that [yoAdx + Bdy #0.
If we notice that

1
f jf(x,y)dxdy 0, nz1,
A 0

1
j I f(x,y)dydx = 1, n=1,
A, 1]
1
[ [ renax =0, nz2,
A. 0
we see that
1 1 1
[ Bay = [ By = [ [ sndsay
oQ 0 o Jo
1
= X 2”'1f ~ff(x,y)dxdy =0,
A, JO
while
1 1 1
Adx = _J A(x,1)dx = —f J‘f(x,y)dydx
oo 0 0 JO

-X 2"'1fA” f:f(x,y)dydx = - 1.

5. Comments. As a corollary to the theorem presented here, one can easily
deduce an extension of the Looman-Menchoff Theorem [S, p. 199] which in-
cludes the extensions given by Maker [4] and Tolstoff [8].

It should be noted also that the proof does not extend to higher dimensions,
at least not for linearly continuous functions. (However, if one modifies the con-
tinuity conditions suitably, the proof can be carried over.)
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