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1. Introduction. Let A(x,y) and B(x,y) be defined on a square Q. If one

makes strong enough assumptions about A(x,y) and B(x,y) and their partial

derivatives, the Green's formula

(1) Adx + Bdy= (Bx-Ay)dxdy
Jbq J Jq

holds. Cohen [2] and Shapiro [6] have shown that (1) holds with much weaker

than the usual assumptions on the functions concerned. In each of these papers

(Bx — Af) is assumed to be in LX(Q) and the partial derivatives (with respect to

both variables) of the functions are assumed to exist except on certain sets.

Cafiero [1], in an investigation of a different aspect of the problem, has shown

that a similar result holds. The sets where the partial derivatives fail to exist are

not the same in each of these papers. In this paper, we will give a proof of (1)

which includes all of these results, at the same time we will weaken the continuity

requirements on the functions A(x,y) and B(x,y).

In the fourth section, we will give an example which shows that the assumptions

we make cannot be weakened substantially.

2. Preliminaries. By a square or a rectangle, we will always mean a closed

square or rectangle with its sides parallel to the coordinate axes. We will denote

the length of the longest side of a rectangle R with s(R).

We will write | £ | for the Lebesgue measure of £, using the same notation for

both one-dimensional and two-dimensional measure, and we will write 0(E) for

the diameter of £.

We will use H(p,E) to denote the Hausdorff p-dimensional measure of £.

That is H(p,E) = sup£inf {Z S(0¡)p; ô(Ot) < e} where each 0¡ is open and

\JO^E.H(E) = H(l,E).
Definition. A function/(x, y) is linearly continuous at a point (a,b) if f(a,y)

is continuous at b and f(x, b) is continuous at a. f(x, y) is linearly continuous
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on P if it is linearly continuous at each point of R. (We consider functions which

are linearly continuous except perhaps at the points of a set E with H(E) = 0.

Goffman considers a more general class of linearly continuous functions in [3],

where he shows that such functions are measurable.)

When discussing a particular pair of functions, we will use the phrase "(1)

holds in a neighborhood of (a,£>)" to mean that there is an open neighborhood

G of (a, b) such that (1) holds for every rectangle contained in G.

Remark 1. If A(x, y) and B(x,y) are bounded and linearly continuous on

a rectangle R and if (Bx — Ay) is in Lt(R), then in order to show that for some

constant K

i  i   Adx + Bdy -     \\    (Bx-Ay)dxdy      z% K,
' JdR JJR

it is sufficient to show that the same inequality holds for every rectangle con-

tained in int(P).

Remark 2. Under the conditions of Remark 1, in order to show that (1)

holds for R, it is sufficient to show that (1) holds in a neighborhood of each

point of int(P).

Remark 1 follows immediately from the dominated convergence theorem.

To see that Remark 2 is true let R' be any rectangle contained in int(P). Since

R' is compact and (1) holds in a neighborhood of each point of R', if we sub-

divide R' into small enough rectangles, each is contained in a neighborhood in

which (1) holds. It follows that (1) holds for R' and hence, by Remark 1, (1)

holds for R.

Lemma 1. If E is a closed subset of a square Q, H(E) is finite, and m is

any positive integer, E can be covered with a finite number of nonoverlap-

ping rectangles Rj such that s(RJ)<l/2m, Zs(Pj) < 8(H(£) + 1), and

\{jRj\ < 8(H(£) + l)/2m, and such that there is a point of E on each side of

each Rj.

Proof. Assume for sim plicity that s(Q) < 1, and divide Q into four equal

nonoverlapping squares Q\, fe=l,---,4. Proceeding in this way construct a

sequence of subdivisions of Q into nonoverlapping squares Qk, k = 1, ■■■A", with

s(ö*)=l/2\

Since H(E) is finite and E is closed, there is a finite open covering of E with

sets 0¡, such that 0(0¡) < l/2m+1 and 1,5(0) < (H(E) + 1). For each Ox, we

can find a k(i) such that l/2*(i)+1 ^ 0(0) < 1 ßW). It is clear that 0¡ is con-

tained in a square S, which is the union of four squares of the fe(i)th subdivision

of Q, and that s(S) = 2/2*(,)£ 45(0) < 2/2m.

We may assume that s(S) ¡a s(Si+1) and set T, = S y and T¡ = Sx- \J'riSJ

to obtain a new covering of E with nonoverlapping sets T¡, each of which

is the union of at most four nonoverlapping sets of the fe(/)th subdivision of Q.
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If we let J j denote the squares which make up the sets T, and contain points

of £, and if we let Rj be the smallest rectangle containing J}C\E, we obtain

a covering of £ with nonoverlapping rectangles. Moreover there is a point of £

on each side of each Rp s(Rf) ̂  s(S f) ¡2 < 1)2 m, Hs(Rf) ̂  Z4s(S¡)/2 < 8(íí(£) +1)

and finally |ljR,[ Ú Zs(R,)2 < S(H(E) + l)/2m.

Lemma 2. Let A(x,y) be linearly continuous on a square Q and let e and ô

be positive constants. Then if E is the set of points (x,y) of Q such that

|y' — y"\ < ô implies that | A(x,y') — A(x,y")\ ^ e, £ is closed.

Proof. Let Q = [a, b~] x [c,d], and let £ be the set of points x of [a,fc] such

that |y' — y"\ <ö implies that | A(x,y') — A(x,y")\ g e. If x' is not in £, there

is a y' and a y", with \y' — y"\ < «5 and \A(x',y') — A(x',y")\ > e. Since A(x,y')

and A(x,y") are continuous, this inequality prevails in a neighborhood of x'.

Thus, [a, f>] — £ is open, £is closed, and £ = £ x [c,d~\ is closed.

Lemma 3. Suppose that R is the union of a finite number of rectangles, that

A(x,y) and B(x,y) are bounded by M and linearly continuous on R, that

(Bx—Ay) is in LX(R), and that (1) holds in a neighborhood of each point of

int(R) except perhaps the points of £nint(R). Then if E is closed and

H(ErMnt(R))^tx,

<4Ma.Adx + Bdy - (Bx- Ay)dxdy
I J 8R JJr

Proof. We may assume that R is a square, and by Remark 1, we need only

show that the inequality holds for every square contained in int(R). We may

thus assume that £ is a closed subset of R, and that H(E) <; a.

Let 0 < e < 1 be given.

Since (Bx — Ay) is in LX(R), there is an integer N such that | C| < (a + 1)/JV

implies that   JJC | Bx — Ay\ dxdy < e.

Since £ is closed and H(E) ^ a, we can cover £ with a finite number of open

sets O i such that o(0¡) < 1/N and Zc5(0¡) < (a + e). Then, for each 0; we

can find a square Q¡, with 0¡ c Q¡ and ¿(O;) = s(Q¡). We then have

E^\jQi,   ls(Qd < (oc + e) and | \JQ,\ < (a + 1)/N.
It is clear that T = R — [JQ, can be written as the union of a finite number

of nonoverlapping rectangles none of which contain points of £. Applying Re-

mark 2 to each of these rectangles we obtain

Adx + Bdy - \\    (Bx-Ay)dxdy = 0.
Jar JJr

Since | Ußi | < (a + 1)/JV, we bave

(Bx — Ay) dxdy     < s,
UQ,
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and since A(x,y) and B(x,y) are bounded by M we also have

Adx + Bdy
JatuOi)

^ 4M I s(Q) < 4M(oc + e).

By combining the last three inequalities we obtain

Adx + Bdy-   (      (Bx-Ay)dxdy
I Ja« JJk

Since e was arbitrary this completes the proof.

< 4M(a + e) + e.

3. Theorem. Let A(x,y) and B(x,y) be bounded on a square Q and linearly

continuous at each point ofQ — D, where D is closed. Let (Bx — Ay) be in Ly(Q),

and let the partial derivatives of A(x,y) and B(x,y) be finite at each point of

Q — [JE„, where each En is closed. Then, if H(D) = 0 and H(E,) < oo for each n,

Adx + Bdy = (Bx - Ay)dxdy.
JdQ JjQIdQ JJQ

Proof.   Assume, first, that D is empty.

By Remark 1, we can assume that the conditions of the theorem are met in

an open set containing Q, and if we let a point (x,y) of Q be in J if (1) does not

hold in any neighborhood of (x, y), J is a closed set and, by Remark 2, we need

only show that J is empty.

For each positive integer TV, let (x,y) be in FN if

\Aix + h,y)-Aix,y)\ 7% N\h\,

\Aix,y + k)-Aix,y)\ g N\k\,

|B(x + n,y)-B(x,y)| z% N\h\,

|B(x,y + fe)-B(x,y)| £N\k\,

whenever |/i| < l/N, |fe| < 1/N, and all the quantities are defined. The sets

FN are closed [8, p. 80], and Q, with the exception of the sets E„, is covered

by \JFN. We may, therefore, write J as the union of the sets J C\FN and the sets

J n E„. If J is not empty, it follows from the Baire Category Theorem that there

is an open square I' such that I' C\ J is not empty and either (a) FN n F => J n /'

for some JV or (b) E„nl' zd J CM' for some n.

The arguments given by Cohen [2] can be carried over to linearly continuous

functions to show that (a) is impossible.

In order to show that (b) cannot occur, let / be any closed square contained

in I'. We will show that (1) holds for J.

Let e > 0 be given.
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Let a point (x,y) of i" be in GN if whenever (x,y') and (x,y") are in I and

| y' - y"\ < 1 ¡2N then | A(x,y') - A(x,y") \ ̂  s and | B(x,y') - B(x,y")\ ^ e, and

whenever (x',y) and (x",y) axe in I with \x'— x"\ < 1/2^ then

| A(x',y) - A(x",y)\íks and | B(x',y) - B(x",y)\ ^ e. By Lemma 2, the sets GN

axe closed, and it is clear that I is covered by \^}GN. It is also clear that

G1 c G2 cz G3 c •••. We can thus conclude that the sets GN n£„ are closed,

that / n £„ =J GN n £„, and finally that H(I n £„) = lim,vH(£„ O GN).

Thus, if we choose M sufficiently large, we have H((I n £„) — GM) < e, and

since (Bx — Ay) is in LX(Q) we can also choose M large enough so that

jjc\Bx-Ay\ dxdy < e whenever \c\< S(H(En n /) + 1) /2M.

Applying Lemma 1, we can find a finite number of nonoverlapping rectangles

Rj which cover £„ O GM, and which satisfy

s(R,)<l/2M,

Z(Rj)< 8(H(£„nGM) + l),

HJR,|<8(tf(£„nGM)+l)/2M  <   8(iî(£nnI)+l)/2M

and such that each R; has a point of GM on each of its sides.

Let Rj = [a, fo] x [c, ci], and let (x', d) and (x", c) be points of GM which occur

on the sides of Rj parallel to the x-axis. Since s(Rf) < 1 \2M, we have

| A(x,d) - A(x,c)| ^ | A(x,d) - A(x',d)\ + \ A(x',d) - A(x",d) \

+ | A(x",d) - A(x",c)\ + \ A(x",c) - A(x,c)\ ^ 4e.

This implies that

r| A(x,c) - A(x,d)\dx^(b- a)4e S 4es(Rj).

By combining this with a similar inequality for B(x, y) we obtain

á Ss(Rj)sAdx + Bdy
JdRj

and finally

(2) If Adx + Bdy    ^ 8 Zs(R,)e ̂  64(H(£„) + l)e.
I Je(uKj)

Since |U Rj\ < 8(iî(£„) + 1)/2M, we also have

(3) (Bx-Ay)dxdyÍÍ       (S*~ < e.

The interior of the set T= I — \^JRj can be written as the union of a finite

number of open rectangles, and since (1) holds in a neighborhood of each point

of int(T) except perhaps the points of £„, and since
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7í(int(T) O En) z% HÜI n E,) -GM)z%e,

we can apply Lemma 3 to cl(T) to obtain

[June

(4) Adx + Bdy  - (Bx - A,
Jgr JJt

) dxdy ^ 4Ke,

where K is the bound of Aix, y) and B(x, y).

By combining (2), (3), and (4), we obtain

Jdi
Adx + Bdy- iBx-Ay)dxdy < (64(H(E„) + 1) + 1 + 4K)s.

Since s was arbitrary this implies that (1) holds for I, which in turn implies

that (b) is impossible. We thus conclude that J is empty, and hence that (1) holds

for Q if D is empty.

Suppose D is not empty, and that 1 > e > 0 is arbitrary.

Since (Bx — Ay) is in LyiQ), if N is sufficiently large,

£
iBx-Ay)dxdy < £,

whenever \c\< 1/JV
Since H(D) = 0, and D is closed, we can cover D with a finite number of open

squares Rj, with siRfi < 1/A7,   Es(Py)<e, and |{JP./| < elN-

We thus have

If iBx — Ay) dxdy < s,

and

I   JSR)
Adx + Bdy z% 4K I s(P;) < 4Ke,

where K is the bound on Aix, y) and B(x, y).

The set T= Q — [jRj can be written as the union of a finite number of non-

overlapping rectangles to which the first part of the proof applies. Thus

f    Adx + Bdy -
JdT JJT

iBx-A)dxdy = 0.

By combining the last three inequalities, we obtain

he
Adx + Bdy -I iBx — Ay) dxdy < i4K + l)e.

JdQ JJ Q

Since e was arbitrary, (1) holds for Q and the proof is complete.
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4. Example. In this section we will give an example which shows that the

conditions given in the theorem can not be weakened substantially. The example

given by Maker [4], can be used to show that if Bx or Ay fails to exist on a closed

set which has Hausdorff dimension one but which is not tr-finite then the equality

(1) may fail. By modifying the example given by Tolstoff [7], we will show that

even when Bx and Ay exist everywhere, some assumption must be made on the

partial derivatives By and Ax which do not appear in (1), and that the assumption

H(l + e,£) = 0, on the set £ where they fail to exist, is not sufficient. We will

use the same example to show that the condition H(D) = 0 on the set of points

where the functions involved are not linearly continuous can not be weakened.

(In particular, it is not sufficient to assume that A(x, y) and B(x, y) axe continuous

functions of x for almost every y and continuous functions of y for almost every x.)

Let

-a      11
g(x, a,b) =  1 + cos27T a^x^b,

b — a

g(x, a,b) = 0 otherwise,

and let

h(x,y;(a,b) x (c,d)) = g(x,a,b)g(y,c,d).

Let C be a Cantor perfect set, and call each of the intervals removed in the

nth step of the construction of C a A„.

Define f(x,y) on Q = [0,1] x [0,1] by

f(x,y) = 4h(x,y;An x A„)/4"|A„|2 on A„ x A„

=  -8ft(x,3/;A„xA1,_1)/4"|AI,||All_1| on A„ x A„_x

= 0 otherwise.

Finally, define A(x,y) and B(x,y) on Q by

A(x>y) =        f(x,u)du  and B(x,y) =       f(u,y)du.
Jo Jo

It is clear that Bx and Ay exist and are equal to f(x, y) everywhere, so that

(Bx-Ay) = 0.
We can notice that if (x,y) is in a rectangle A„ x [0,1] or a rectangle [0,1] x A„.

A(x, y) is continuous and Ax exists and is finite. A similar observation can be made

for B(x,y) and B„.

If we let M„ denote the maximum of the absolute value of A(x, y) on a rectangle

A„ x [0,1], a close examination of A(x,y) shows that M„ = 8/4"| A„[. Since

A(x,y) = 0 on C x [0,1], .<4(x,>>) will be continuous at points of C x C (and

hence on Q) provided Lim„ M„ = 0, which will be the case if | A„ | = 1 ¡r" with

r < 4. On the other hand if r = 4, we will have Lim„ M„ = 8 so that ^4(x, y) will

be bounded. A similar observation can be made for B(x,y). In the first case, we
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can choose r < 4 in such a way that H(\ + e, C x C) = 0. If r = 4, we have

oo >H(Cx C)>0.

In order to complete our discussion, we must show that $SQAdx + Bdy j= 0.

If we notice that

y)dxdy = 0, n^l,

y) dydx =  1, n = 1,

y) dydx = 0, n ^ 2,

we see that

while

f      f/(x,

Í        Í    /(*,
Ja„ Jo

Í      f/(X'Ja„   Jo

f     Bdy  =   [  B(l,y)dy   =   f    f f(x,y)dxdy
J8Q Jo Jo Jo

=   I 2"-1 f    [ f(x,y)dxdy = 0,
Ja„ Jo

JAdx =   - j   A(x, l)dx = — f(x,y)dydx
d<t> Jo Jo Jo

=  -I 2"-1 f     f /(x.y)dydx =  - 1.
Ja„ J o

5. Comments. As a corollary to the theorem presented here, one can easily

deduce an extension of the Looman-Menchoff Theorem [5, p. 199] which in-

cludes the extensions given by Maker [4] and Tolstoff [8].

It should be noted also that the proof does not extend to higher dimensions,

at least not for linearly continuous functions. (However, if one modifies the con-

tinuity conditions suitably, the proof can be carried over.)
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