

Course MM1005

Limits: Formal definition

Sofia Tirabassi

tirabassi@math.su.se

Salvador Rodriguez Lopez

s.rodriguez-lopez@math.su.se

Motivation

Working with statistics, you will have to work and master several notions of convergence of sequences of random variables (functions) on a probability space over U, $\{X_n\}_n$:

- **1** Almost surely: $X_n \stackrel{a,s}{\to} X$ as $n \to +\infty$.
- ② In distribution/law: $X_n \stackrel{d}{\to} X$ as $n \to +\infty$.
- **3** In probability: $X_n \stackrel{\mathbb{P}}{\to} X$ as $n \to +\infty$.

To be able to grasp those ideas we need to understand the idea of **pointwise convergece** first.

Pointwise convergence

If we have continuous time, say that the family of random variables is $\{X_t\}_{t>0}$, we consider the function $t\mapsto X_t(\omega)$.

Definition

We say that X_t converges pointwise to X if **for all** $u \in U$,

$$\lim_{t\to+\infty}X_t(u)=X(u),$$

That is, for all $\varepsilon > 0$, there exists $\omega > 0$ such that for all $t \ge \omega$ $|X_t(u) - X(u)| < \varepsilon$.

That may be a huge step right now to grasp, so let us forget about u, and focus on the expression as a function of t, and try to understand the notion of limit.

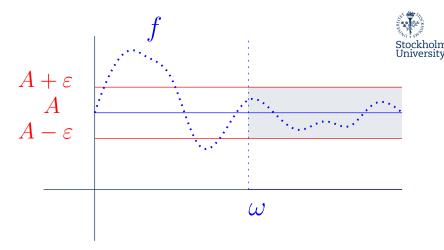
Limit towards $+\infty$

Definition

Let $f:(0,+\infty)\to\mathbb{R}$ be a given function. Let $A\in\mathbb{R}$. We say that f converges to A as t goes to infinity, and we denote it by

$$\lim_{t\to+\infty}f(t)=A,$$

if, and only if, for all arbitrarily small $\varepsilon > 0$, there exists $\omega > 0$ such that, for all $t \ge \omega$ we have that $|f(t) - A| < \varepsilon$.



Intuitively: Tell me how far away you would accept the values of your function to be from A (This is the role of ε).

So, I can find a value large enough (This is the role of ω), such that from that point onward, all the values of f are as closed to A as we have prescribed.

Example

Lets show that $\lim_{t\to+\infty}\frac{1}{t}=0$. Given $\varepsilon>0$, we need to find ω such that for all $t\geq\omega$

$$\left| \frac{1}{t} - 0 \right| = \frac{1}{t} < \varepsilon \Leftrightarrow \frac{1}{\varepsilon} < t,$$

So, fixed ε we can take $\omega = \frac{2}{\varepsilon}$.

Example

Lets show from the definition that

$$\lim_{t\to+\infty}\frac{t-1}{t}=1,$$

Given ε , we want to find ω such that for all $t \ge \omega$ we have that

$$\left|\frac{t-1}{t}-1\right|<\varepsilon \Leftrightarrow \frac{1}{t}<\varepsilon,$$

So, as before, it is enough to take $\omega = \frac{2}{\varepsilon}$.

Complete the slide

Lets show from the definition that

$$\lim_{t\to+\infty}\frac{t-1}{2t}=\frac{1}{2},$$

Given ε , we want to find ω such that for all $n \ge \omega$ we have that

$$<\varepsilon\Leftrightarrow$$
 _____< ε ,

So, it is enough to take $\omega =$ _____.

Exercise

Calculate the following limit and show from the definition that your answer is correct:

$$\lim_{x\to+\infty}\frac{1-x^2}{1+x^2},$$

Practice Exercises

Prove, using the definition of limit as $x \to +\infty$, that

$$\bullet \lim_{x\to +\infty} e^{-x} = 0,$$

$$\bullet \lim_{x\to +\infty} e^{-x^2} = 0,$$

$$\bullet \lim_{x\to +\infty} \frac{3x+5}{x} = 3,$$

$$\bullet \lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right) = 0,$$

$$\bullet \lim_{x\to +\infty}\frac{x+1}{2x-3}=\tfrac{1}{2},$$

Thank you for your attention!

