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4.32 The Cauchy-Goursat Theorem

For the sake of completeness, we shall give here a proof of the Cauchy-Goursat Theorem of
simply connected domains. The argument here uses that we know that the theorem holds for
triangles, and so it also does for squares (see Remark 4.27 above). We start by a technical
lemma:

Lemma 4.33. Let 𝑓 be holomorphic on and inside a simple, piecewise-smooth, closed curve 𝛾.
For every 𝜀 > 0, the closed region Int(𝛾) = Int(𝛾) ∪ {𝛾} can be covered by a finite number 𝑁 of
closed squares 𝑄 𝑗 , 𝑗 = 1,2, . . . , 𝑁 , such that for each of these, the following property holds:

∃𝑧 𝑗 ∈ 𝑄 𝑗 ∩ Int(𝛾) such that
���� 𝑓 (𝑧) − 𝑓 (𝑧 𝑗 )𝑧− 𝑧 𝑗

− 𝑓 ′(𝑧 𝑗 )
���� < 𝜀, ∀𝑧 ∈ 𝑄 𝑗 ∩ Int(𝛾) \ {𝑧 𝑗 }. (4.7)

Proof. Suppose, by contradiction, that the statement is false. Then there exists some 𝜀 > 0 such
that for every finite covering, there is at least one square where (4.7) fails.

Start with an initial covering of the region with 𝑁0 squares 𝑄 (0)
𝑘 , 𝑘 = 1,2, . . . , 𝑁0, each of side

length 𝑑, and repeatedly refine this covering by subdividing each square into four smaller squares
of side 𝑑/2, 𝑑/4, and so on. At the 𝑛-th step, the covering consists of 𝑁𝑛 squares 𝑄 (𝑛)

𝑘 , 𝑘 =
1,2, . . . , 𝑁𝑛, each of side 𝑑/2𝑛.
By assumption, for each subdivision level 𝑛, inequality (4.7) fails in at least one of the 𝑄 (𝑛)

𝑘 . Let

F𝑛 := {𝑘 : (4.7) fails} .
Let

𝐴𝑛 =
⋃
𝑘∈F𝑛

𝑄 (𝑛)
𝑘 ∩ Int(𝛾), 𝑛 ∈ N0.

Clearly, 𝐴𝑛 ⊃ 𝐴𝑛+1, since if (4.7) fails for a square of level 𝑛+1, it also fails for the level-𝑛 square
containing it.
Since by hypothesis 𝐴𝑛 ≠ ∅ for all 𝑛, choose a point 𝑤𝑛 ∈ 𝐴𝑛, and consider the sequence {𝑤𝑛}∞𝑛=0.
As 𝑤𝑛 ∈ Int(𝛾) and Int(𝛾) is a closed and bounded subset of C (hence compact), by Bolzano-
Weierstrass theorem (see Remark 1.18), there exists a convergent subsequence

{
𝑤𝑛 𝑗

}
𝑗
with limit

𝑤 ∈ Int(𝛾).
Since 𝑓 (𝑧) is holomorphic on Int(𝛾), and hence at 𝑤, there exists 𝛿(𝜀) > 0 such that���� 𝑓 (𝑧) − 𝑓 (𝑤)𝑧−𝑤 − 𝑓 ′(𝑤)

���� < 𝜀, ∀𝑧 ∈ 𝐷 (𝑤,𝛿) \ {𝑤}.

Now consider a covering at level 𝑛0, with 𝑛0 large enough, such that
√

2𝑑/2𝑛0 < 𝛿. Since 𝑤 is in
each 𝐴𝑛 (as 𝐴𝑛 is closed and all 𝑤𝑛 𝑗 eventually lie in 𝐴𝑛), we have that 𝑤 ∈ 𝑄 (𝑛0)

𝑘0
∩ Int(𝛾) ⊂ 𝐴𝑛0

for some 𝑘0.
We then arrive at the contradiction, since we have that

∃𝑤 ∈ 𝑄 (𝑛0)
𝑘0

∩ Int(𝛾) such that
���� 𝑓 (𝑧) − 𝑓 (𝑤)𝑧−𝑤 − 𝑓 ′(𝑤)

���� < 𝜀, ∀𝑧 ∈ 𝑄 (𝑛0)
𝑘0

∩ Int(𝛾) \ {𝑤}.

which contradicts the assumption that (4.7) fails in that square. □
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Figure 4.6:
∫
𝛾
𝑓 (𝑧)d𝑧 = ∑

𝑗

∫
𝛾 𝑗
𝑓 (𝑧)d𝑧. Besides, some of the squares 𝑄 𝑗 lie inside the domain,

while others don’t.

Theorem 4.34: Cauchy-Goursat for simple curves

Let 𝑓 ∈ O(Int(𝛾)), where Γ is a piecewise-smooth simple closed curve. Then∫
𝛾
𝑓 (𝑧)d𝑧 = 0.

Proof. By virtue of the previous lemma, for all 𝜀 > 0 it is possible to find a finite covering of
Int(𝛾), the closed region bounded by 𝛾, with 𝑁 closed squares 𝑄 𝑗 , 𝑗 = 1,2, . . . , 𝑁 , such that for
each square there exists a point 𝑧 𝑗 ∈ 𝑄 𝑗 ∩ Int(𝛾) and a function 𝛿 𝑗 (𝑧) defined by

𝛿 𝑗 (𝑧) =

𝑓 (𝑧) − 𝑓 (𝑧 𝑗 )
𝑧− 𝑧 𝑗

− 𝑓 ′(𝑧 𝑗 ), 𝑧 ≠ 𝑧 𝑗

0, 𝑧 = 𝑧 𝑗

which is continuous and satisfies |𝛿 𝑗 (𝑧) | < 𝜀 for all 𝑧 ∈ 𝑄 𝑗 ∩ Int(𝛾).
Let 𝛾 𝑗 , 𝑗 = 1,2, . . . , 𝑁 , be the positively oriented boundary path of𝑄 𝑗 ∩Int(𝛾). Using the identity

𝑓 (𝑧) = 𝑓 (𝑧 𝑗 ) + 𝑓 ′(𝑧 𝑗 )(𝑧− 𝑧 𝑗 ) + 𝛿 𝑗 (𝑧) (𝑧− 𝑧 𝑗 ),

we obtain, for each 𝛾 𝑗 :∫
𝛾 𝑗

𝑓 (𝑧)d𝑧 = ( 𝑓 (𝑧 𝑗 ) − 𝑧 𝑗 𝑓 ′(𝑧 𝑗 ))
∫
𝛾 𝑗

d𝑧+ 𝑓 ′(𝑧 𝑗 )
∫
𝛾 𝑗

𝑧d𝑧+
∫
𝛾 𝑗

𝛿 𝑗 (𝑧)(𝑧− 𝑧 𝑗 )d𝑧.
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Since
∫
𝛾 𝑗

d𝑧 = 0 and
∫
𝛾 𝑗
𝑧d𝑧 = 0 (as their integrands have primitives 𝑧 and 𝑧2/2, respectively, and

𝛾 𝑗 is closed), it follows that ∫
𝛾 𝑗

𝑓 (𝑧)d𝑧 =
∫
𝛾 𝑗

𝛿 𝑗 (𝑧) (𝑧− 𝑧 𝑗 )d𝑧.

Summing over all 𝑗 = 1, . . . , 𝑁 , we have

𝑁∑
𝑗=1

∫
𝛾 𝑗

𝑓 (𝑧)d𝑧 =
∫
𝛾
𝑓 (𝑧)d𝑧,

and therefore, using the triangle inequalities and Theorem 4.10, we obtain that����∫
𝛾
𝑓 (𝑧)d𝑧

���� =
������ 𝑁∑𝑗=1

∫
𝛾 𝑗

𝛿 𝑗 (𝑧) (𝑧− 𝑧 𝑗 )d𝑧

������ ≤ 𝑁∑
𝑗=1

∫
𝛾 𝑗

��𝛿 𝑗 (𝑧) (𝑧− 𝑧 𝑗 )��d𝑧
Notice that on 𝛾 𝑗 , we have that ��𝛿 𝑗 (𝑧)(𝑧− 𝑧 𝑗 )�� ≤ 𝜀√2𝑑,

where 𝑑 is the side-length of the squares 𝑄 𝑗 , and so
√

2𝑑 is its diameter. Thus∫
𝛾 𝑗

��𝛿 𝑗 (𝑧) (𝑧− 𝑧 𝑗 )��d𝑧 ≤ √
2𝑑 ℓ

(
𝛾 𝑗

)
𝜀.

Notice that the length is equal to 4𝑑 if 𝑄 𝑗 lies inside the domain, and if not,

ℓ
(
𝛾 𝑗

)
≤ 4𝑑 + 𝐿 𝑗 ,

where 𝐿 𝑗 is the length of 𝛾 𝑗 ∩ 𝛾 (which we define as zero if the the intersection of the cube 𝑄 𝑗

with 𝛾 is empty). Hence we have that����∫
𝛾
𝑓 (𝑧)d𝑧

���� ≤ √
2𝜀 ©­«4𝑁𝑑2 + 𝑑

𝑁∑
𝑗=1
𝐿 𝑗

ª®¬ .
Notice that 𝐿 :=

∑𝑁
𝑗=1 𝐿 𝑗 is the length of 𝛾.

By the Jordan Curve theorem (Theorem 3.22), Int(𝛾) is bounded. So we can find a square of
finite side 𝐷 such that it contains ∪𝑁𝑗=1𝑄 𝑗 , which has area 𝑁𝑑2. So 𝑁𝑑2 ≤ 𝐷2. Moreover

𝑑𝐿 ≤ 𝐷𝐿.

So we have, in conclusion, that ����∫
𝛾
𝑓 (𝑧)d𝑧

���� < 𝜀√2𝐷 (4𝐷 + 𝐿),

where the constant on the right hand side is independent on the covering {𝑄 𝑗 }, and since 𝜀 is
arbitrary, the claim follows. □
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