
Abstract Algebra (MM5020) Wushi Goldring 29 May 2019

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to
carefully state such results. No calculators and no notes allowed. You may e.g., use part of Problem 4
to do part of Problem 1, even if you are unsuccessful with that part of Problem 4. You may use part
(a) of a problem to do part (b) even if you have not solved (a), and so on.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let S4 be the symmetric group on {1, 2, 3, 4}.
(a) (2 points) Show that the quaternion group of order 8 is not a subgroup of S4.
(b) (2 points) Let H be a subgroup of S4 which contains a 3-cycle and a 4-cycle. Show that H = S4.
(c) (2 points) Let V be the Klein 4 subgroup of S4 given by V := {e, (12)(34), (14)(23), (13)(24)}.

Show that V is normal in S4.
(d) (2 points) Show that S4/V ∼= S3.

Solution. (a) A subgroup of S4 of order 8 is a 2-Sylow subgroup. By Sylow’s Theorem, all p-Sylow
subgroups are conjugate. The subgroup 〈(1234), (14)(23)〉 is dihedral of order 8, because conjugating
(1234) by (14)(23) gives (4321) = (1432) = (1234)−1. Therefore every subgroup of order 8 of S4 is
dihedral of order 8. Since the quaternion group of order 8 is not isomorphic to the dihedral group of
order 8, the quaternion group of order 8 is not a subgroup of S4.

(b) The subgroup A4 of S4 is the unique subgroup of order 12 (else, if N were another such subgroup,
then N ∩A4 would be a subgroup of A4 of order 6, but A4 has no such subgroup). The order of H is
divisible by 3 and 4, hence by 12. Since a 4-cycle is odd, A4 contains no 4-cycles. Thus H is not A4,
so H = S4.

(c) A subgroup of a group G is normal if and only if it is a disjoint union of conjugacy classes of G.
The subgroup V is the union of the identity and the conjugacy class of elements of type (2, 2) (product
of two disjoint transpositions). Hence V is normal in S4.

(d) The quotient S4/V has order 6. A group of order 6 is either cyclic or isomorphic to S3 ∼= D6.
If S4/V were cyclic, it would have a normal subgroup of index 3, which by the isomorphism theorems
would correspond to a normal subgroup of S4 of order 8 i.e., a 2-Sylow of S4. However, S4 has 3 Sylow
2-subgroups.

Here is one way to see that: There are 4 · 3/2 = 6 transpositions in S4 and the number of 4-cycles
in S4 is 4!/4 = 3! = 6. If there were a unique 2-Sylow, it would have to contain these 12 elements of
2-power order.

Variant: The group S4 acts transitively by conjugation on the set Syl2(S4) of its 2-Sylow subgroups.
Since V is normal, it acts trivially. The action gives a permutation representation ρ : S4 → S3. It
remains to see ρ is surjective. If not, ker ρ would be a normal subgroup containing V , hence kerV
would be A4 or S4, contradicting the transitivity of the action. Alternatively, any element of 2-power
order not in V (e.g., a transposition) normalizes the unique 2-Sylow it contains and permutes the
other 2-Sylows. This shows that Im(ρ) has even order; that the order is divisible by 3 follows from the
transitivity of the action.
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Problem 2. Let G be a group. A subgroup K of G is said to be characteristic in G if K is stable
under all automorphisms of G i.e., ϕ(K) = K for all ϕ ∈ Aut(G).

(a) (1 points) Show that a characteristic subgroup of G is normal in G.
(b) (2 points) Assume N is a normal subgroup of G and K is a characteristic subgroup of N . Show

that K is normal in G.
(c) (2 points) Let p be a prime. Assume G is finite and that P is a p-Sylow subgroup of G. Show

that the normalizer NG(P ) of P in G is self-normalizing i.e. NG(NG(P )) = NG(P ).
(d) (2 point) Assume G is finite and that P,Q are two distinct p-Sylow subgroups of G of order p2.

If P ∩Q 6= {e}, show that NG(P ∩Q) contains at least p+ 1 Sylow p-subgroups of G.

Solution. (a) By definition, a subgroup is normal if and only if it is stable under all inner automor-
phisms; hence a subgroup stable under all automorphisms is normal.

(b) Let Intx : G→ G denote the inner automorphism given by conjugation by x ∈ G; thus Intx(g) =
xgx−1. Since N is normal in G, the inner automorphism Intx leaves N stable, so its restriction
Intx |N to N gives an automorphism of N (not necessarily inner as automorphism of N). Since K
is characteristic in N , it is stable under the automorphism Intx |N . Since K is stable under all inner
automorphisms of G, K is normal in G.

(c) Every subgroup H of G is normal in its normalizer; in fact the normalizer NG(H) is characterized
as the largest subgroup of G in which H is normal. Hence P is normal in NG(P ). Since P is a p-Sylow
of G, it is also a p-Sylow in NG(P ). By Sylow’s Theorems, P is the unique p-Sylow of NG(P ).

If ϕ is an automorphism of G, then ϕ maps a subgroup H to a subgroup of the same order as H.
Hence ϕ maps a p-Sylow to another p-Sylow.

Hence P is characteristic in NG(P ). Since NG(P ) is normal in NG(NG(P )), by (b) we get that P
is normal in NG(NG(P )). Hence NG(NG(P )) is contained in NG(P ). Since the reverse inclusion is
trivial, the two normalizers are equal.

(d) Since every group of order p2 is abelian, The p-Sylows P,Q are both contained in NG(P ∩ Q).
Hence P,Q are two distinct p-Sylow subgroups of NG(P ∩ Q). By Sylow’s Theorems, the number of
p-Sylows is ≡ 1 (mod p). Since it is ≥ 2, it must be at least p+ 1.
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Problem 3. Let R be a commutative ring with 1.
(a) (1 point) Assume R is an integral domain. Show that the polynomial x2− 1 ∈ R[x] has at most

two distinct roots in R.
(b) (1 point) Give an example of an integral domain R where x2 − 1 ∈ R[x] has just one distinct

root in R.
(c) (1 point) Let p be a prime and k ≥ 2 an integer. Show that Z/pkZ contains nonzero nilpotent

elements and a unique maximal ideal.
(d) (1 point) Give an example where R has a unique maximal ideal and where x2 − 1 ∈ R[x] has

strictly more than 2 distinct roots in R.
(e) (1 point) Give an example where R has no nonzero nilpotent elements and where x2− 1 ∈ R[x]

has strictly more than 2 distinct roots in R.

Solution. (a) One has a2− 1 = (a− 1)(a+1) in R. If a is a root of x2− 1 in R, then (a− 1)(a+1) = 0
in R. Since R is an integral domain, a = 1 or a = −1 (and these two possibilities are the same if R
has characteristic 2 i.e., if 1 + 1 = 0 in R).

(b) In R = F2 = Z/2Z there is a unique solution x = 1, since 1 = −1 in F2.
(c) One has p 6= 0 since k ≥ 2 and pk = 0 in Z/pkZ. Hence p is a nonzero nilpotent element. If I

is an ideal in Z/pkZ, then π−1I is an ideal in Z, where π : Z→ Z/pkZ is the projection. Since Z is a
PID, π−1I = (a) for some integer (a); thus I = π(a) is also principal. By the Isomorphism Theorems,
ideals of Z/pk correspond to ideals of Z containing (pk) via I → π−1(I). Therefore, if I is maximal
in Z/pk, then π−1I is maximal in Z and if J is maximal in Z then either π(J) is maximal in Z/pk or
π(J) = Z/pk. It follows that the one and only maximal ideal of Z/pk is (p) (if q is a prime different
from p, then π((q)) = Z/pk since π(q) is a unit in Z/pk).

(d) In Z/8Z, the unique maximal ideal is (2) by (c) and 1, 3, 5, 7 are four distinct roots of x2 − 1.
(e) The ring Z/15Z has no nonzero nilpotent elements, since for an integer a, if an is divisible by

15, then a is already divisible by 15 (consider the factorizations of a and an into primes). By contrast,
Z/15 does have zero divisors e.g., 3 · 5 = 0 in Z/15.

The elements 1,−1, 4,−4 are distinct roots of x2 − 1 in Z/15Z (under the Chinese Remainder
isomorphism Z/15 ∼= Z/5×Z/3, these correspond to (1, 1), (−1,−1), (−1, 1) and (1,−1) respectively).
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Problem 4. Let p be an odd prime and let n ≥ 1 be an integer.
(a) (2 points) Show that a group of order 2p which is not abelian is isomorphic to the dihedral group

D2p of order 2p.
(b) (1 points) Show that any group of order 2p is either dihedral or cyclic.
(c) (2 points) Let G be a group of order 2n with an element b of order n and an element a of order

2 which is not a power of b. Show that every element of G can be written uniquely in the form
aibj with 0 ≤ i ≤ 1 and 0 ≤ j ≤ n− 1.

(d) (2 points) Give an example of a group of order 16 which is neither abelian nor dihedral but
which is an example of (c) i.e., G has an element b of order 8 and an element a of order 2
which is not a power of b. Justify your answer.

Solution. (a) Let G be a group of order 2p. By Sylow’s Theorems, G has a unique, normal p-Sylow
subgroup; call it N . Let b be a generator of N . Let a be an element of order 2 in G. Then a and b
together must generate all of G by order considerations. Thus, if a and b commute, then G is abelian.

Assume that G is not abelian. Then a and b do not commute. Since N is normal in G, one has
aba−1 ∈ N ; hence aba−1 = bj for some j ∈ Z. A second iteration of this relation gives

a2ba−2 = abja−1 = (aba−1)j = bj
2
.

Since a2 = e, we get bj2 = b. So bj2−1 = e. Since b has order p, p divides j2−1 = (j+1)(j−1). Hence
p divides j + 1 or p divides j − 1. Since ab 6= ba one has j 6≡ 1 (mod p). So we conclude that j ≡ −1
(mod p). Therefore

G = 〈a, b |a2 = bp = e, aba−1 = b−1〉
is a presentation of G which exhibits it as a dihedral group of order 2p.

(b) Let G have order 2p. If G is not abelian, it is dihedral by (a). If G is abelian, then, given a of
order 2 and b of order p, the product ab has order divisible by lcm(2, p) = 2p; thus ab is a generator of
G.

(c) Let N := 〈b〉 and H := 〈a〉. Then N is normal in G. So HN is a subgroup of G and HN = G
since the orders of H,N are coprime and their product is the order of G. Therefore every element of
G = HN is of the form aibj . The expression is unique because for all h1, h2 ∈ H and n1, n2 ∈ N , an
equality h1n1 = h2n2 implies that h−1

2 h1 = n2n
−1
1 is an element of H ∩N = {e}. Thus h1 = h2 and

n1 = n2.
(d) Define

G = 〈a, b | a2 = b8 = e, aba−1 = b3〉.
Then G has order 16 and is an example of (c) because 32 ≡ 1 mod 8, so that a2ba−2 = b3

2
= b in

G.
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Problem 5.
(a) (1 point) Show that x3 + 6x+ 10 is irreducible in Q[x] but reducible in R[x].
(b) (1 point) Show that x4 + 1 is irreducible in Q[x].
(c) (1 point) Show that x4 + 1 is reducible in F3[x].

Solution. (a) By the rational root test, any root in Q must be an integer dividing 10. By plugging in
such integers, one checks that x3 + 6x + 10 has no roots in Q. A polynomial of degree at most 3 is
irreducible over a field if and only if it has no roots in that field. Hence x3+6x+10 is irreducible over
Q.

Since a polynomial is continuous on R and since x3 + 6x+ 10 tends to +∞ (resp. −∞ as x tends
to +∞ (resp. −∞), by the intermediate value theorem x3 + 6x+ 10 has a real root.

(b) As in (a), the rational root test shows that x4 + 1 has no roots. Hence, if x4 + 1 is reducible,
then it must factor as

x4 + 1 = (x2 + ax+ b)(x2 + cx+ d)

for some a, b, c, d ∈ Q. Multiplying out and equating terms of each degree gives a+c = 0, b+d+ac = 0,
ad+ bc = 0 and bd = 1. Substituting a = −c into ad+ bc = 0 gives c(b− d) = 0. So c = 0 or b = d.

If c = 0, then a = 0 and b = −d. Thus bd = 1 gives b2 = −1 which contradicts b ∈ Q (by the
rational root test x2 + 1 is irreducible over Q).

If b = d, then bd = 1 gives b = d = 1 or b = d = −1. Then b+ d+ ac = 0 gives a2 = 2 or a2 = −2
and both contradict a ∈ Q (again x2 + 2 and x2 − 2 are both irreducible over Q by the rational root
test).

(c) In F3, one has −2 = 1, so given (b), we are led to a2 = 1. Taking a = 1 gives c = −1 (and
taking a = −1 will symmetrically give c = 1). One finds b = d = −1 and that these values satisfy all
the equations above in F3. Thus x4 + 1 = (x2 + x− 1)(x2 − x− 1) in F3[x].
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