
Abstract Algebra (MM5020) Wushi Goldring 27 August 2019

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to
carefully state such results. No calculators and no notes allowed. You may e.g., use part of Problem 4
to do part of Problem 1, even if you are unsuccessful with that part of Problem 4. You may use part
(a) of a problem to do part (b) even if you have not solved (a), and so on.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1 (6 points). Let n ≥ 2 be an integer, let Sn be the symmetric group on {1, 2, . . . , n} and let
τ ∈ Sn be a transposition.

(a) (1 point) Compute the size of the conjugacy class of τ in Sn.
(b) (3 points) Describe an isomorphism between the centralizer CentSn(τ) of τ and the direct product

Z/2× Sn−2.
(c) (1 points) For n > 2 show that there is no n-cycle in Sn which commutes with τ .
(d) (1 point) Give an example of n > 2, a transposition τ and an element of order n in Sn which

commutes with τ .

Solution. (a) The conjugacy class of τ consists precisely of all transpositions. There are n(n − 1)/2
transpositions in Sn.

(b) Let C = CentSn(τ). By de�nition 〈τ〉 is contained in the center of C, so in particular is normal
in C. Further, writing τ = (i j) for some distinct i, j ∈ {1, 2, . . . , n}, let H be the subgroup of Sn
which �xes both i and j. Then H ⊂ C. Since 〈τ〉 is central in C, H is normal in the product 〈τ〉H.
Since 〈τ〉∩H = {e}, the product is direct 〈τ〉H = 〈τ〉×H and it is a subgroup of C of order 2(n−2)!.

The index of C in Sn is the order of the conjugacy class of τ . By (a), the order of C is 2(n!)/n(n−1) =
2(n− 2)!. Since C and its subgroup 〈τ〉 ×H have the same order, they are equal: C = 〈τ〉 ×H.

Any bijection between {1, 2, . . . , n} \ {i, j} and {1, 2 . . . , n − 2} de�nes an isomorphism ϕ0 from
H onto Sn−2. Hence ϕ : 〈τ〉 × H → Z/2 × Sn−2 given by ϕ(τ i, σ) := (i, ϕ0(σ)) de�nes the desired
isomorphism.

(c) By (b) any element of C either �xes two elements i, j or its decomposition into disjoint cycles
involves a transposition. Neither is true of an n-cycle.

(d) Let n = 6 and τ = (12) and σ = (12)(345) Then στ = τσ and σ has order lcm{2, 3} = 6. �
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Problem 2 (5 points). Assume N and M are two subgroups of a group G.

(a) (2 points) Suppose N is normal in G. Show that NM is a subgroup of G.
(b) (1 points) Now assume that both N and M are normal in G. Show that NM is normal in G.
(c) (2 points) Finally, suppose that both N and M are normal in G, that NM = G and that

N ∩M = {e}. Show that G ∼= N ×M .

Solution. (a) Let n1m1 and n2m2 be two elements of NM . Then

n1m1n2m2 = n1(m1n2m
−1
1 )m1m2

belongs to NM since m1n2m
−1
1 ∈ N by normality of N . Similarly, if nm ∈ NM , then

(nm)−1 = m−1n−1 = (m−1n−1m)m−1

is again in NM by normality of N . Hence NM is a subgroup of G.
(b) If both N and M are normal, then for all g ∈ G and all nm ∈ NM one has

gnmg−1 = (gng−1)(gmg−1) ∈ NM,

where the �rst grouped term is in N since N is normal and the second grouped term is in M since M
is normal in G.

(c) Since both N and M are normal in G,

nmn−1m−1 ∈ N ∩M
for all n ∈ N and m ∈ M . Since N ∩M = {e}, we conclude that nm = mn for all n ∈ N and
m ∈M . This shows that the map ϕ : NM → N ×M given by ϕ(nm) = (n,m) is a well-de�ned group
isomorphism. �
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Problem 3 (9 points). Let G be a �nite group.

(a) (3 points) Assume |G| = 33. Show G is cyclic.
(b) (3 points) Assume |G| = 53 · 31. Show that G has a nontrivial, normal p-Sylow subgroup for

some prime p.
(c) (3 points) Assume |G| = 165 and that G has a normal 5-Sylow subgroup. Show that G is

abelian.

Solution. (a) Since 3 does not divide 11 − 1 = 10, Sylow's theorems imply that G has a normal 3-
Sylow subgroup P and a normal 11-Sylow subgroup Q. Since (3, 11) = 1, by Lagrange's theorem the
intersection P ∩ Q = {e} and the product PQ = G. Since P and Q are both normal, we conclude
G = P ×Q. If a is a generator of P and b is a generator of Q, then again (3, 11) = 1 implies that the
product ab generates G.

(b) If G has a unique 31-Sylow, it is normal by Sylow's theorems and we are done. Otherwise, since
the number of 31-Sylows is ≡ 1 (mod 31) and divides 53, the number of 31-Sylows must be 53. Since
two distinct 31-Sylows intersect in the identity, and each contains 30 non-identity elements, all of order
31, the 53 Sylow 31-subgroups account for 30 ·53 elements of order 31. This leaves 53 elements of order
6= 31, which must make up the one and only 5-Sylow of G. Hence G has a normal 5-Sylow.

(c) One has 165 = 3 · 5 · 11. By Sylow's theorems, G has a unique, hence normal 11-Sylow P . By
assumption G has a normal 5-Sylow, call it Q. Let R be a 3=Sylow of G. Since P is normal in G, it
is normalized by R. Hence PR is a subgroup of order 33; it is cyclic by (a). Hence reciprocally also
R is normalized by P . The index of the normalizer NG(R) in G is the number of 3-Sylow subgroups.
Since P normalizes R, the normalizer NG(R) contains the subgroup PR of order 33. So the number
of 3-Sylow subgroups of G divides 165/33 = 5. Since it is also 1 mod 3, we conclude that R is the
unique 3-Sylow of G, hence it too is normal in G. As in (a), one has G = P × Q × R since 3, 5, 11
are pairwise relatively prime and if a, b, c are generators of P,Q,R respectively, then the product abc
generates PQR = G.

�
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Problem 4 (3 points). Let ϕ : R→ S be a homomorphism between commutative rings with 1.

(a) (1 point) Show that the inverse image of a prime ideal in S is a prime ideal in R.
(b) (1 point) Show that every maximal ideal of S is a prime ideal of S.
(c) (1 point) Show by example that the inverse image of a maximal ideal in S need not be maximal

in R.

Solution. (a) Let Q be a prime ideal in S and set P to be the inverse image of Q in R. The inverse
image of a subgroup under a group homomorphism is a subgroup, so P is a subgroup of R under +.
If r ∈ R and a ∈ P , then ϕ(a) ∈ Q, so ϕ(ra) = ϕ(r)ϕ(a) ∈ Q since Q is an ideal. Hence ra is in
P , which shows P is an ideal. If a1a2 ∈ P for some a1, a2 ∈ R, then ϕ(a1a2) = ϕ(a1)ϕ(a2) ∈ Q, so
ϕ(a1) ∈ Q or ϕ(a2) ∈ Q since Q is prime. If ϕ(ai) ∈ Q then ai ∈ P for i = 1, 2. Hence a1 ∈ P or
a2 ∈ P . So P is a prime ideal in R.

(b) Assume m is a maximal ideal in S and that ab ∈ m for some a, b ∈ S. If a ∈ m, we are
done. Otherwise, (m, a) is an ideal which properly contains m; so (m, a) = S since m is maximal. In
particular, there exists m ∈ m and s ∈ S such that 1 = m+ sa. Multiplying by b gives b = mb+ sab.
The two summands on the right belong to m, so b ∈ m.

(c) Let ϕ : Z → Q be the inclusion. The zero ideal (0) is maximal in Q because Q is a �eld. Its
inverse image in Z is again (0) and (0) is not maximal in Z as it is properly contained in (n) for every
n > 1. �
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Problem 5 (7 points). Let f(x) ∈ Z[x].

(a) (1 point) Assume f(x) = x3 − 2x + 14. Show that f(x) is irreducible in Q[x] but reducible in
R[x].

(b) (1 point) Assume that f is monic and that for some prime p, the reduction of f modulo p is
irreducible in Fp[x]. Show that f(x) is irreducible in Z[x].

(c) (1 point) Assume f is irreducible in Q[x]. Is f necessarily irreducible in Z[x]? Explain.
(d) (1 point) Assume f(x) = x4 + ax2 + b for some a, b ∈ Z. Show that the roots of f in C have

the form ±α,±β for some α, β ∈ C and that (αβ)2 ∈ Z.
(e) (2 points) Let f(x) be as in (d). Show that f is irreducible over Q if and only if none of

α2, α− β, α+ β lie in Q. Hint: Compute also α2 + β2.
(f) (1 point) As a concrete example of (d)-(e), factor f(x) = x4 + 4 into irreducibles over Q.

Solution. (a) By the rational root test, any root in Q must be an integer dividing 14. By plugging in,
we check that none of ±1,±2,±7,±14 are roots of f . So f has no root in Q. Since its degree is ≤ 3,
f is irreducible over Q.

(b) Assume f factors in Z[x] as f = gh. Since also f = (−g)(−h), we may assume g, h are both
monic. Now f̄ = ḡh̄ in Fp[x] where bar denotes reduction mod p. Since g, h are both monic and f̄ is
irreducible in Fp[x] we must have g = 1 or h− 1.

(c) No. Example: f(x) = 2x is irreducible in Q[x] but reducible in Z[x] since 2 is not a unit in Z.
(d) One has f(x) = g(x2), where g(y) = y2 +ay+ b. Solving for y using the quadratic formula gives

that the roots of f are

±

√
−a±

√
a2 − 4b

2
.

So the roots have the form ±α and ±β if we set α =

√
−a+

√
a2−4b
2 and β = α =

√
−a−

√
a2−4b
2 . Then

(αβ)2 =

(
−a+

√
a2 − 4b

2

)(
−a−

√
a2 − 4b

2

)
=
a2 − (a2 − 4b)

4
= b ∈ Q.

(e) First note that α2 + β2 = −a ∈ Q. So if either α − β or α + β is in Q, then using (α ± β)2 =
α2 + β2 ± 2αβ shows that αβ ∈ Q.

If α2 ∈ Q (resp. α − β ∈ Q, α + β ∈ Q, then (x − α)(x + α) = x2 − α2 (resp. (x + α)(x − β),
(x+ α)(x+ β)) is a factor of f over Q, so that f is reducible.

Conversely, assume none of α2, α+ β, α− β are in Q. Then α 6∈ Q. Further (αβ)2 ∈ Q shows that
β2 and thus also β does not belong to Q. Hence f has no roots in Q. So the only way for f to be
reducible would be to factor as a product q1q2 of two quadratic polynomials q1, q2 ∈ Q[x]. But the
roots of q1 are among ±α,±β, so either the coe�cient of x in q1 would be ±(α ± β) or the constant
term of q1 would be −α2 or −β2, contradicting that none of these lie in Q.

(f) Specializing (d) with a = 0 and b = 4, we are led to let α =
√

2i and β =
√
−2i. The square-root

of i and −i is only determined up to sign; let us �x
√
i = e2πi/8 and

√
−i = i

√
i = e6πi/8 in C. Then

√
i = cos(2π/8) + i sin(2π/8) =

√
2(1 + i)

2
.

Similarly,
√
−i =

√
2(−1 + i)/2. So α = 1 + i and β = −1 + i. Thus α−β = 2 ∈ Q and αβ = −2 ∈ Q.

Following (e) we �nd

f(x) = [(x+ α)(x− β)][(x− α)(x+ β)] = (x2 + 2x+ 2)(x2 − 2x+ 2).

Variant: Here is a less conceptual and more elementary way, using the trick "complete the square,
hope for a di�erence of squares":

x4 + 4 = (x4 + 4x2 + 4)− 4x2 = (x2 + 2)2 − (2x)2 = (x2 + 2x+ 2)(x2 − 2x+ 2).

�
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