MATEMATISKA INSTITUTIONEN	Tentamensskrivning i
STOCKHOLMS UNIVERSITET	Foundations of Analysis
Avd. Matematik	7.5 hp
Examinator: Sven Raum	22 nd August 2019

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- The exam has 5 questions. If you handed in homework, you solve problem 5 and select 3 problems among questions 1-4 which you solve. State clearly which problems you chose. If you opted out of the homework, you solve problems 1-5.
- Each question is graded on a 0-20 scale.
- A score of at least 50 points will ensure a pass grade.
- The exam is returned on 2 nd September at 10 o'clock in sal 16 , hus 5.
(a) Define countability and prove that the set of natural numbers \mathbb{N} is countable.
(b) Provide an example of an uncountable set. Verify that it is indeed uncountable.
(c) Let X be a set. Show that the following two statement are equivalent:
- X is finite or countable.
- There is an injective map $X \rightarrow \mathbb{N}$.
(d) Let X be a countable set and $X \rightarrow Y$ be a surjective map onto another set Y. Show that Y is countable or finite. (Even if you heard of it, you are not allowed to use the axiom of choice.)

2. Metric spaces and topology
(a) Let (X, d) be a metric space.
i. Define the notion of an open subset of X.
ii. Define the notion of a closed subset of X.
(b) Let $n \in \mathbb{N}_{\geq 1}$ and consider the function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

i. Show that $\left(\mathbb{R}^{n}, d\right)$ is a metric space.
ii. Show that $(0,1)^{n} \subset \mathbb{R}^{n}$ is open with respect to the metric d.
(c) Provide an example of a X metric space which contains a non-empty compact open subset S such that $S \neq X$.
(d) Show that $[0,1] \subset \mathbb{R}$ is compact, without referring to the Heine-Borel theorem.
3. Differentiation
(a) State the implicit function theorem.
(b) Let $O \subset \mathbb{R}^{n}$ be an open subset and $f: O \rightarrow \mathbb{R}$ be differentiable. Show that f is continuous.
(c) i. Prove Rolle's theorem.
ii. Show that the converse of Rolle's theorem does not hold, by providing an example of a differentiable function $f:[-1,1] \rightarrow \mathbb{R}$ such that $f^{\prime}(0)=0$ holds, but f does not have a local extremum at 0 .
(d) For $k \in \mathbb{N}$ let $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function satisfying $f_{k}(0)=0$. Assume that for all $k \in \mathbb{N}$ and all $x \in \mathbb{R}^{n}$ we have $\left\|f_{k}^{\prime}(x)\right\| \leq \frac{1}{k^{2}}$.
i. Show that the series $f(x)=\sum_{k=0}^{\infty} f_{k}(x)$ converges absolutely for all $x \in \mathbb{R}^{n}$.
ii. Show that f is continuously differentiable.
4. Integration
(a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Define the Riemann integral of f.
(b) Show that the function

$$
\begin{aligned}
\mathbb{1}_{\mathbb{Q}} & : \mathbb{R} \rightarrow \mathbb{R} \\
\mathbb{1}_{\mathbb{Q}}(x) & = \begin{cases}1 & x \in \mathbb{Q} \\
0 & x \notin \mathbb{Q}\end{cases}
\end{aligned}
$$

is not Riemann integrable on any non-trivial compact interval.
(c) Find a monotone increasing function $\alpha:[0,1] \rightarrow \mathbb{R}$ such that for all continuous functions f : $[0,1] \rightarrow \mathbb{R}$ the following equality holds:

$$
\int_{0}^{1} f \mathrm{~d} \alpha=\frac{1}{2}(f(0)+f(1)) .
$$

Remember to prove all claims you make.
(d) For a Riemann integrable function $f:[a, b] \rightarrow \mathbb{R}$ define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{a}^{x} f(t) \mathrm{d} t
$$

i. Show that for any choice of f as above, the function F is continuous.
ii. Provide an example of a function f as above, such that F is not differentiable.
5. True / false questions

Please indicate your answers on the separate answer sheet.
(a) If $A \subset \mathbb{R}$ is countable and $B \subset \mathbb{R}$ is an arbitrary set, then $A \cap B$ is countable.
(b) If a subset E of the real numbers is bounded above, and $x=\sup E$, then $x \in E$.
(c) The set $\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}_{\geq 1}\right\}=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ is compact.
(d) Let X be a metric space and $A \subset X$ a proper subset with some isolated point. Then A is not open.
(e) Let X be a metric space. If $E \subset X$ a perfect subset and $F \subset E$ a subset that is closed in X. Then F is perfect.
(f) Let $\left(p_{n}\right)_{n \in \mathbb{N}}$ be a sequence in a metric space X. Then $\left(p_{n}\right)_{n}$ converges to $p \in X$ if and only if every neighbourhood of p contains all but finitely many members of $\left(p_{n}\right)_{n}$.
(g) Given any real sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, we have $\sum_{n=0}^{\infty}\left(a_{n}-a_{n+1}\right)=a_{0}$.
(h) The function $f:(1,+\infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is uniformly continuous.
(i) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing function, then f has at most countably many points of discontinuity.
(j) If $f: X \rightarrow Y$ is a continuous function between compact metric spaces and $E \subset X$ is closed, then $f(E) \subset Y$ is a closed subset.
(k) Put $X=(-\infty, 0) \cup(0, \infty)$ and let $f: X \rightarrow \mathbb{R}$ be a differentiable function satisfying $f^{\prime}(x)=0$ for all $x \in X$. Then f is constant.
(l) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function whose derivatives of all orders exist and are continuous. Then $f(x)=\sum_{n \in \mathbb{N}} \frac{f^{(n)}(0)}{n!} x^{n}$ for every real number for which the right-hand side converges.
(m) Let $f:[0,1] \rightarrow \mathbb{R}$ be a function whose absolute value $|f|$ is Riemann integrable. Then also f is Riemann integrable.
(n) Let $\alpha, \beta:[0,1] \rightarrow \mathbb{R}$ be two monotone increasing functions and assume that $\mathcal{R}(\alpha)=\mathcal{R}(\beta)$. Further assume that for all $f:[0,1] \rightarrow \mathbb{R}$ in $\mathcal{R}(\alpha)$ equality

$$
\int_{0}^{1} f \mathrm{~d} \alpha=\int_{0}^{1} f \mathrm{~d} \beta
$$

holds. Then $\alpha=\beta$.
(o) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions in $\mathrm{C}^{\prime}([0,1], \mathbb{R})$ which converges uniformly to $f \in \mathrm{C}([0,1], \mathbb{R})$. Then f is also continuously differentiable.
(p) Let X be a metric space and $E \subset X$ dense subset. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real-valued continuous functions X such that the sequence of restrictions $\left(\left.f_{n}\right|_{E}\right)_{n}$ converges uniformly. Then also $\left(f_{n}\right)_{n}$ converges uniformly.
(q) Let $K \subset \mathrm{C}([0,1], \mathbb{R})$ be a compact set. Then there is $B \in \mathbb{R}_{\geq 0}$ such that for all $f \in K$ and for all $x \in[0,1]$ we have $|f(x)| \leq B$.
(r) Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ admits all partial derivatives $\frac{\partial f}{\partial x_{i}}, i \in\{1, \ldots, n\}$. Then f is differentiable.
(s) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. Then there is some element $v \in \mathbb{R}^{n} \backslash\{0\}$ such that $\frac{\partial f}{\partial x_{n}}=D_{v} f$.
(t$)$ Denote by $\mathrm{d}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$ the Euclidean distance function on \mathbb{R}^{2}. Then inverse function theorem applies at every point in \mathbb{R}^{2} to the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x)=\mathrm{d}(0, x)$.

ANSWER SHEET FOR QUESTION 5

EXAM CODE:

- Answer Question 5 by placing a clear mark (either \checkmark or \times) in the box that corresponds to your answer of the table below. Please, mark your answer ONCE only.
- In order to provide a fair exam, that does not encourage random answering, the following system is applied to calculate your points on question 5 . For each correct answer you will be awarded 1 point. For each incorrect answer you will lose 1 point. If the number of incorrect answers is higher than the number of correct answers, then the total mark awarded for this question be 0 .

	True	False
a.		
b.		
c.		
d.		
e.		
f.		
g.		
h.		
i.		
j.		
k.		
l.		
m.		
n.		
o.		
p.		
q.		
r.		
s.		
t.		

