MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik

Examinator: Sven Raum

Tentamensskrivning i Foundations of Analysis 7.5 hp 22nd August 2019

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- The exam has 5 questions. If you handed in homework, you solve problem 5 and select 3 problems among questions 1-4 which you solve. State clearly which problems you chose. If you opted out of the homework, you solve problems 1-5.
- Each question is graded on a 0-20 scale.
- A score of at least 50 points will ensure a pass grade.
- The exam is returned on 2nd September at 10 o'clock in sal 16, hus 5.

GOOD LUCK!

1. Sets

- (a) Define countability and prove that the set of natural numbers \mathbb{N} is countable.
- (b) Provide an example of an uncountable set. Verify that it is indeed uncountable.
- (c) Let X be a set. Show that the following two statement are equivalent:
 - X is finite or countable.
 - There is an injective map $X \to \mathbb{N}$.
- (d) Let X be a countable set and $X \to Y$ be a surjective map onto another set Y. Show that Y is countable or finite. (Even if you heard of it, you are not allowed to use the axiom of choice.)

Idea for a solution.

- (a) A set X is countable if there is a bijection $X \to \mathbb{N}$. The natural numbers are countable, since the identity map $\mathbb{N} \to \mathbb{N}$ is a bijection.
- (b) The set of all binary sequences $\{0,1\}^{\mathbb{N}}$ is uncountable. Indeed let $\varphi: \mathbb{N} \to \{0,1\}^{\mathbb{N}}$ be any map. Define a binary sequence f by

$$f(k) = \begin{cases} 0 & \text{if } \varphi(k)_k = 1\\ 1 & \text{if } \varphi(k)_k = 0 \end{cases}$$

Then f is different from any element in the image of φ , so the φ cannot be surjective. In particular there is not bijection $\mathbb{N} \to \{0,1\}^{\mathbb{N}}$.

(c) By definition X is finite if there is some $n \in \mathbb{N}$ and a bijection $X \to \{0, \dots, n-1\}$. (Remark: here is a little sublety about the empty set being finite!) Since the latter set maps injectively into \mathbb{N} , every finite set X admits an injection into \mathbb{N} . So does every countable set, as inspecting the definition shows. Vice versa assume that X is a set and $\varphi: X \to \mathbb{N}$ is an injection. Define a injection by

$$\psi: X \to \mathbb{N}: \psi(x) = |\{y \in X \mid \varphi(y) < x\}|$$

Then either ψ is surjective (iff X is infinite) or $\psi(X) = \{0, \dots, n-1\}$ for some $n \in \mathbb{N}$ that hence satisfies n = |X|.

(d) Since X is countable, we may from in the beginning assume that $X = \mathbb{N}$. Let $\varphi : \mathbb{N} \to Y$ be a surjection. For every $y \in Y$ set $\psi(y) = \min\{x \in X \mid \varphi(x) = y\}$. Note that this is well-defined, since φ is surjective and every subset of \mathbb{N} has a unique smallest element. By construction ψ is injective, so positive solution to the previous question implies that Y is countable or finite.

2. Metric spaces and topology

- (a) Let (X, d) be a metric space.
 - i. Define the notion of an open subset of X.
 - ii. Define the notion of a closed subset of X.
- (b) Let $n \in \mathbb{N}_{\geq 1}$ and consider the function $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

- i. Show that (\mathbb{R}^n, d) is a metric space.
- ii. Show that $(0,1)^n\subset\mathbb{R}^n$ is open with respect to the metric d.
- (c) Provide an example of a X metric space which contains a non-empty compact open subset S such that $S \neq X$.
- (d) Show that $[0,1] \subset \mathbb{R}$ is compact, without referring to the Heine-Borel theorem.

Idea of solutions.

- (a) A subset $O \subset X$ is open if for every $x \in O$ there is some $\varepsilon > 0$ such that $B(x,\varepsilon) \subset O$. A subset $A \subset X$ is closed if for every convergent sequence $(a_n)_n$ of elements in A, the limit point satisfies $\lim_{n \to \infty} a_n \in A$.
- (b) On order to verify that (\mathbb{R}^n, d) is a metric space, one has to show that:
 - For all $x, y \in \mathbb{R}^n$ we have $d(x, y) \geq 0$: this is clear from the definition.
 - If d(x,y) = 0, then x = y: indeed if d(x,y) = 0, then for all $i \in \{1, ..., n\}$ we have $|x_i y_i| = 0$ and hence $x_i = y_i$.
 - For all $x, y \in \mathbb{R}^n$ we have d(x, y) = d(y, x): this follows from $|x_i y_i| = |y_i x_i|$.
 - The triangle inequality: this follows from the triangle inequality for the absolute value $|x_i y_i|$.

In order to show that $(0,1)^n$ is open with respect to d, the quickest way is to notice that, denoting $x=(\frac{1}{2},\ldots,\frac{1}{2})^t\in\mathbb{R}^n$, we have $(0,1)^n=B(x,1/2)$. In every metric space balls are open, which is very quick to show with the triangle inequality.

- (c) The discrete metric space with two points is such an example.
- (d) We have to show that every open cover of [0,1] has a finite subcover. Let $(U_i)_{i\in I}$ be an open cover of [0,1]. Define

$$\mathcal{S} = \{x \in [0,1] \mid \exists \text{ finite subset } J \subset I : [0,x] \subset \bigcup_{i \in J} U_i\}.$$

Note that \mathcal{S} is bounded and non-empty (since $0 \in \mathcal{S}$). By completeness of \mathbb{R} there is a minimal upper bound of \mathcal{S} , which we denote by x_0 . Let $i_0 \in I$ be some index such that $x_0 \in U_{i_0}$ and let $\varepsilon > 0$ be chosen such that $B(x, 2\varepsilon) \subset U_{i_0}$, where we take balls in the metric space [0, 1]. By definition of \mathcal{S} there is some finite subset $J \subset I$ such that $[0, x_0 - \varepsilon] \subset \bigcup_{i \in J} U_i$. So, denoting $x_1 = \min\{x_0 + \varepsilon, 1\}$ the family $(U_i)_{i \in J \cup \{i_0\}}$ covers $[0, x_1]$. Since x_0 is an upper bound for \mathcal{S} , this shows $x_0 = 1$.

3. Differentiation

- (a) State the implicit function theorem.
- (b) Let $O \subset \mathbb{R}^n$ be an open subset and $f: O \to \mathbb{R}$ be differentiable. Show that f is continuous.
- (c) i. Prove Rolle's theorem.
 - ii. Show that the converse of Rolle's theorem does not hold, by providing an example of a differentiable function $f: [-1,1] \to \mathbb{R}$ such that f'(0) = 0 holds, but f does not have a local extremum at 0.
- (d) For $k \in \mathbb{N}$ let $f_k : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function satisfying $f_k(0) = 0$. Assume that for all $k \in \mathbb{N}$ and all $x \in \mathbb{R}^n$ we have $||f'_k(x)|| \leq \frac{1}{k^2}$.
 - i. Show that the series $f(x) = \sum_{k=0}^{\infty} f_k(x)$ converges absolutely for all $x \in \mathbb{R}^n$.
 - ii. Show that f is continuously differentiable.

Idea of solutions.

- (a) The theorem can be found for example as Theorem 9.28 in Rudin's book.
- (b) Let $f: O \to \mathbb{R}$ be as in the statement. It suffices to show that f is continuous on every open square inside O and we can thus restrict to the case n = 1. For $x \in O$ we us the definition of differentiability at x and calculate

$$|f(x) - f(x+h)| = h \left| \frac{f(x+h) - f(x)}{h} \right| \longrightarrow 0 \cdot f'(x) = 0$$

So f is continuous at x.

i. Rolle's theorem states that for every differentiable function on a non-trivial compact interval $f:[a,b]\to\mathbb{R}$ satisfying f(a)=f(b) there is some a< x< b such that f'(x)=0. For its proof we observe that either f is constant (in which case the conclusion is trivial) or f attains a local extremum at some point $x\in(a,b)$. Without loss of generality, we may assume that x is a local minimum. Then agreement of left and right derivative imply that

$$f'(x) = \lim_{h \to 0, h > 0} \frac{f(x+h) - f(x)}{h} \ge 0$$

$$f'(x) = \lim_{h \to 0, h < 0} \frac{f(x+h) - f(x)}{h} \le 0.$$

It follows that indeed f'(x) = 0 holds.

- ii. The function $f(x) = x^3$ does the job.
- (d) Since $|f'_k(x)| \leq \frac{1}{k^2}$ we also fine $|f(x)| \leq \frac{1}{k^2} ||x||$ for all $x \in \mathbb{R}^n$. Hence we obtain absolute converges thanks to the estimate

$$\sum_{k} |f_k(x)| \le ||x|| \sum_{k} \frac{1}{k^2} < \infty.$$

By a direct estimate, also $\sum_k f_k'(x)$ converges (absolutely). One can now apply Theorem 7.17 of Rudin to conclude that $\sum_k f_k$ is differentiable.

4. Integration

- (a) Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Define the Riemann integral of f.
- (b) Show that the function

$$\mathbb{1}_{\mathbb{Q}}: \mathbb{R} \to \mathbb{R}$$

$$\mathbb{1}_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

is not Riemann integrable on any non-trivial compact interval.

(c) Find a monotone increasing function $\alpha:[0,1]\to\mathbb{R}$ such that for all continuous functions $f:[0,1]\to\mathbb{R}$ the following equality holds:

$$\int_0^1 f d\alpha = \frac{1}{2} (f(0) + f(1)).$$

Remember to prove all claims you make.

(d) For a Riemann integrable function $f:[a,b]\to\mathbb{R}$ define $F:[a,b]\to\mathbb{R}$ by

$$F(x) = \int_{a}^{x} f(t) dt.$$

- i. Show that for any choice of f as above, the function F is continuous.
- ii. Provide an example of a function f as above, such that F is not differentiable.

Idea of solutions.

- i. Let $f:[0,1] \to \mathbb{R}$ be continuous. The Riemann integral of f can be defined by first defining upper and lower sums over partitions of [0,1] and then stating that their limits (the upper and lower integral) agree for continuous functions and their common value is the Riemann integral.
- ii. One uses density of \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ in \mathbb{R} in order to show that the upper integral of $\mathbb{1}_{\mathbb{Q}}$ equals |b-a| and its lower integral equals zero.

iii. The function

$$\alpha(x) = \begin{cases} 0 & \text{if } x = 0\\ \frac{1}{2} & \text{if } 0 < x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

does the job. This is proven by calculating the upper and lower sums for the Riemann-Stieltjes integral explicitly and making use of continuity of f at the points 0 and 1.

iv. A. Riemann integrable functions are bounded, say $|f| \leq M$. Then one estimates for x < y

$$|F(x) - F(y)| = |\int_{x}^{y} f(t)dt| \le \int_{x}^{y} |f(t)|dt \le |y - x|b.$$

It follows that F is even uniformly continuous.

B. Taking $f = \mathbb{1}_{[0,1]}$ on the interval [-1,1] a short calculation shows that $F(x) = x\mathbb{1}_{[0,1]}(x)$, which is not differentiable.

5. True / false questions

Please indicate your answers on the separate answer sheet.

- (a) If $A \subset \mathbb{R}$ is countable and $B \subset \mathbb{R}$ is an arbitrary set, then $A \cap B$ is countable.
- (b) If a subset E of the real numbers is bounded above, and $x = \sup E$, then $x \in E$.
- (c) The set $\{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}_{\geq 1}\} = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ is compact.
- (d) Let X be a metric space and $A \subset X$ a proper subset with some isolated point. Then A is not open.
- (e) Let X be a metric space. If $E \subset X$ a perfect subset and $F \subset E$ a subset that is closed in X. Then F is perfect.
- (f) Let $(p_n)_{n\in\mathbb{N}}$ be a sequence in a metric space X. Then $(p_n)_n$ converges to $p\in X$ if and only if every neighbourhood of p contains all but finitely many members of $(p_n)_n$.
- (g) Given any real sequence $(a_n)_{n\in\mathbb{N}}$, we have $\sum_{n=0}^{\infty}(a_n-a_{n+1})=a_0$.
- (h) The function $f:(1,+\infty)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is uniformly continuous.
- (i) If $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, then f has at most countably many points of discontinuity.
- (j) If $f: X \to Y$ is a continuous function between compact metric spaces and $E \subset X$ is closed, then $f(E) \subset Y$ is a closed subset.
- (k) Put $X = (-\infty, 0) \cup (0, \infty)$ and let $f : X \to \mathbb{R}$ be a differentiable function satisfying f'(x) = 0 for all $x \in X$. Then f is constant.
- (l) Let $f: \mathbb{R} \to \mathbb{R}$ be a function whose derivatives of all orders exist and are continuous. Then $f(x) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(0)}{n!} x^n$ for every real number for which the right-hand side converges.
- (m) Let $f:[0,1] \to \mathbb{R}$ be a function whose absolute value |f| is Riemann integrable. Then also f is Riemann integrable.
- (n) Let $\alpha, \beta : [0,1] \to \mathbb{R}$ be two monotone increasing functions and assume that $\mathcal{R}(\alpha) = \mathcal{R}(\beta)$. Further assume that for all $f : [0,1] \to \mathbb{R}$ in $\mathcal{R}(\alpha)$ equality

$$\int_0^1 f d\alpha = \int_0^1 f d\beta$$

holds. Then $\alpha = \beta$.

(o) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions in $C'([0,1],\mathbb{R})$ which converges uniformly to $f\in C([0,1],\mathbb{R})$. Then f is also continuously differentiable.

5

- (p) Let X be a metric space and $E \subset X$ dense subset. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of real-valued continuous functions X such that the sequence of restrictions $(f_n|_E)_n$ converges uniformly. Then also $(f_n)_n$ converges uniformly.
- (q) Let $K \subset C([0,1], \mathbb{R})$ be a compact set. Then there is $B \in \mathbb{R}_{\geq 0}$ such that for all $f \in K$ and for all $x \in [0,1]$ we have $|f(x)| \leq B$.
- (r) Assume that $f: \mathbb{R}^n \to \mathbb{R}$ admits all partial derivatives $\frac{\partial f}{\partial x_i}$, $i \in \{1, \dots, n\}$. Then f is differentiable.
- (s) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then there is some element $v \in \mathbb{R}^n \setminus \{0\}$ such that $\frac{\partial f}{\partial x_n} = D_v f$.
- (t) Denote by $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ the Euclidean distance function on \mathbb{R}^2 . Then inverse function theorem applies at every point in \mathbb{R}^2 to the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x) = d(0, x).

ANSWER SHEET FOR QUESTION 5

EXAM CODE:

- Answer Question 5 by placing a clear mark (either ✓or ×) in the box that corresponds to your answer of the table below. Please, mark your answer ONCE only.
- In order to provide a fair exam, that does not encourage random answering, the following system is applied to calculate your points on question 5. For each correct answer you will be awarded 1 point. For each incorrect answer you will lose 1 point. If the number of incorrect answers is higher than the number of correct answers, then the total mark awarded for this question be 0.

	True	False
a.		X
b.		X
c.	X	
d.		X
e.		X
f.	х	
g.		Х
h.	X	
i.	X	
j.	х	
k.		X
l.		X
m.		Х
n.		х
0.		х
p.	х	
q.	х	
r.		Х
s.	X	
t.		X