MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik Examinator: Sven Raum Tentamensskrivning i Foundations of Analysis 7.5 hp 2nd October 2019

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- The exam has 5 questions. If you handed in homework, you solve problem 5 and select 3 problems among questions 1-4 which you solve. State clearly which problems you chose. If you opted out of the homework, you solve problems 1-5.
- Each question is graded on a 0-20 scale.
- A score of at least 50 points will ensure a pass grade.
- The exam is returned on 15th October at 11 o'clock in office 402, house 6.

GOOD LUCK!

1. Ordered fields

- (a) Define the notion of an ordered field.
- (b) Show that the rational numbers form an ordered field.
- (c) Prove that the rational numbers do not have the least-upper-bound property.
- (d) Show that for an ordered field F the following statements are equivalent:
 - F has the least-upper-bound property.
 - \bullet Every non-empty subset of F that has a lower bound, also has a largest lower bound.
 - ullet Every non-empty, bounded subset of F has a least upper bound as well as a largest lower bound.

Idea of solution.

- (a) An ordered field is a field F with an order < such that the following two axioms hold:
 - for all $x, y, z \in F$: $x < y \Longrightarrow x + z < y + z$
 - for all $x, y \in F$: x > 0 and $y > 0 \Longrightarrow xy > 0$
- (b) We have to check the two axioms. For the first one, we have to recall the order on \mathbb{Q} : for $a, c \in \mathbb{Z}$ and $b, d \in \mathbb{N}_{\geq 1}$ we have $\frac{a}{b} < \frac{c}{d}$ if and only if ad < bc. This immediately implies that in \mathbb{Q} we have x < y if and only if 0 < y x, which allows to conclude that the first axiom holds. Validity of the second axiom similarly follows from the fact that the product of two positive natural numbers is a positive natural number.
- (c) Let $A = \{x \in \mathbb{Q} \mid x^2 < 2\}$. Then 2 is an upper bound of A, so A is bounded from above. We show that it cannot have a least upper bound. Indeed, if u is any upper bounder of A, then one of the following three statements is true: either $u^2 < 2$, $u^2 = 2$ or $u^2 > 2$. If $u^2 < 2$ was the case, then for large $n \in \mathbb{N}$ we have

$$(u+\frac{1}{n})^2 = u^2 + \frac{2}{n}u + \frac{1}{n^2} < 2$$

which contradicts the assumption that u is an upper bound of A. Further, we can exclude the case $u^2 = 2$, since \mathbb{Q} does not contain a root of 2. It follows that $u^2 > 2$ must hold. But, then for large $n \in \mathbb{N}$

$$(u-\frac{1}{n})^2 = u^2 - \frac{2}{n}u + \frac{1}{n^2} > 2$$

showing that there is a smaller upper bound of A than u.

(d) The equivalence between the first two items is derived by using the additive inverse: u is an upper bound of A if and only if -u is a lower bound for -A. Together the first two items imply the last one. It remains to conclude the first item from the last. If $A \subset F$ is bounded from above and non-empty, we take $a_0 \in A$ and consider the bounded set $B = \{a \in A \mid a \geq a_0\}$. The least upper bound of B, which exists by the last item, is then also a least upper bound of A.

2. Uniform continuity

- (a) Define the notion of a uniformly continuous function between two metric spaces.
- (b) Denote by $\mathbb{R}_{\geq 0}$ the set of non-negative real numbers. For $x \in \mathbb{R}_{\geq 0}$ and $n \in \mathbb{N}_{\geq 1}$ denote by $x^{1/n}$ the unique element of $\mathbb{R}_{\geq 0}$ satisfying $(x^{1/n})^n = x$. Show that for all $n \in \mathbb{N}_{\geq 1}$ the function $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $f(x) = x^{1/n}$ is uniformly continuous.
- (c) Show that every continuous function on a compact metric space is uniformly continuous.
- (d) Let $S \subset X$ be a dense subset of a metric space, let Y be a complete metric space and let $f: S \to Y$ be a uniformly continuous function. Show that there is a unique continuous function $g: X \to Y$ satisfying g(x) = f(x) for all $x \in S$.

Idea of solution.

- (a) Let X,Y be metric spaces. A function $f:X\to Y$ is called uniformly continuous if for all $\varepsilon>0$ there is some $\delta>0$ such that for all $x_1,x_2\in X$ that satisfy $d(x_1,x_2)<\delta$ we have $d(f(x_1),f(x_2))<\varepsilon$.
- (b) Let $\varepsilon > 0$ and write $\delta_0 = (\frac{\varepsilon}{4})^n$. Consider the restriction of f to the interval $[\delta_0, \infty)$. The derivative of f on this interval equals $x \mapsto \frac{1}{n} x^{-\frac{n-1}{n}}$, which is bounded by some C > 0. Let $\delta = \min\{\frac{\varepsilon}{2C}, \delta_0\}$. We can show uniform continuity separately on the intervals $[0, \delta_0]$ and $[\delta_0, \infty)$. For the first case let $x, y \in [0, \delta_0)$. Then

$$d(x^{1/n}, y^{1/n}) \le x^{1/n} + y^{1/n} \le \frac{\varepsilon}{2} < \varepsilon.$$

If $x, y \in [\delta_0, \infty)$ satisfy $d(x, y) < \delta$, then the choice of C implies that $d(x^{1/n}, y^{1/n}) \le Cd(x, y) < \varepsilon$.

- (c) This is proven in the course book see Theorem 4.19.
- (d) Let $x \in X$ and let $(x_n)_n$ and $(y_n)_n$ be two sequences of elements in S such that $x_n \to x$. Since f is uniformly continuous, the sequences $(f(x_n))_n$ and $f((y_n))_n$ are Cauchy in Y and thus by completeness converge to points say a and b in Y, respectively. We claim that a = b. Indeed, if $\varepsilon > 0$ there is some $\delta > 0$ such that whenever $w, z \in X$ satisfy $d(w, z) < \delta$, then $d(f(w), f(z)) < \varepsilon$. Let $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ we have $d(x_n, x) < \delta/2$ and $d(y_n, x) < \delta/2$. Then a short calculation shows that $d(f(x_n), f(y_n)) < \varepsilon$ for all $n \geq n_0$. This implies that $d(a, b) \leq \varepsilon$. Since $\varepsilon > 0$ was arbitrary, we showed that a = b.

We can now define a function $g: X \to Y$ by declaring g(x) to be the unique limit of a sequence $(f(x_n))_n$ where $(x_n)_n$ is any sequence of elements in S converging to x. This makes sense by the first paragraph. By construction g is continuous and extends f.

3. Differentiation

- (a) Let $O \subset \mathbb{R}^n$ be an open subset. Define the notion of differentiable function $f: O \to \mathbb{R}^m$.
- (b) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function whose partial derivatives exist and are continuous. Show that f is differentiable.
- (c) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable. Show that there is some constant M > 0 such that for all $x, y \in \mathbb{R}^n$ satisfying $||x||, ||y|| \le 1$ the following inequality holds.

$$||f(x) - f(y)|| \le M||x - y||.$$

Idea of solutions.

- (a) This is Definition 9.11 of the course book.
- (b) This is the second part of the proof of Theorem 9.21
- (c) This is a special case of Theorem 9.19

4. Integration

- (a) Give an example of a sequence of continuous functions $f_n:[0,1]\to\mathbb{R}$ such that $\int_0^1 f_n(x)dx=1$ for all $n\in\mathbb{N}$, but $\lim_{n\to\infty} f_n=0$ pointwise.
- (b) For $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be some continuous functions such that $\lim_{n \to \infty} f_n = 0$ pointwise. Assume that $f_{n+1}(x) \le f_n(x)$ holds for all $n \in \mathbb{N}$ and all $x \in [0,1]$. Show that $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$
- (c) Assume that f is a Riemann integrable function on [0,1]. Show that f^2 is Riemann integrable.

Idea of solutions.

(a) One can choose the following sequence

$$f_n(x) = \begin{cases} n^2 x & x \in [0, \frac{1}{n}] \\ 2n - n^2 x & x \in [\frac{1}{n}, \frac{2}{n}] \\ 0 & \text{otherwise.} \end{cases}$$

- (b) This follows from a combination of Theorem 7.13 and 7.16.
- (c) The proof of Theorem 6.11 can be applied.

5. True / false questions

Please indicate your answers on the separate answer sheet.

- (a) Every finite subset of \mathbb{Q} has a supremum.
- (b) If F is an ordered field and $x \in F$, then $x \le x^2$.
- (c) The union of any collection of countable sets is countable.
- (d) The subset $\mathbb{Q} \subset \mathbb{R}$ is neither open nor closed.
- (e) If $A \subset \mathbb{R}$ is a bounded subset, then $\sup A$ is a limit point of A.
- (f) If K is a compact metric space and $(U_i)_{i\in I}$ is an open cover of K, such that for every point $x\in K$ there are at least two sets in $(U_i)_i$ that contain x, then there is a finite subcover of $(U_i)_i$ having the same property.
- (g) Every convergent sequence in a metric space is a Cauchy sequence.
- (h) If $\sum_n a_n = A$ and $\sum_n b_n = B$ are two absolutely convergent series of real numbers, then $\sum_n a_n b_n = AB$.
- (i) The function $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is uniformly continuous.
- (j) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $x \mapsto |f(x)|$ is a continuous function. Then f is continuous.
- (k) If $f, g : [0,1] \to \mathbb{R}$ are two functions such that f and f+g are differentiable, then also g is differentiable.
- (l) If $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function and $x \in \mathbb{R}$ is such that f'(x) > 0, then there is a neighbourhood of x on which f is monotone increasing.
- (m) Every differentiable function on [0, 1] is a uniform limit of polynomials
- (n) There are two bounded functions $f, g: [0,1] \to \mathbb{R}$ such that

- (o) Every monotonically increasing function on [0,1] is Riemann-Stieltjes integrable with respect to any monotonically increasing function α .
- (p) The sequence of functions $f_n: \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \frac{x}{n}$ converges uniformly to the zero function.
- (q) Let E be a metric space and $(f_n)_n$ a sequence of continuous functions on E converging pointwise to some function f. Then $f_n \to f$ uniformly if and only if f is continuous.
- (r) If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $x \in \mathbb{R}^n$, then all directional derivatives of f at x exist.
- (s) There is a sequence of Riemann integrable functions on [0,1] which uniformly converge to the indicator function

$$\mathbb{1}_{\mathbb{Q}\cap[0,1]}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}\cap[0,1] \\ 0 & \text{otherwise.} \end{cases}$$

(t) The Inverse Function Theorem applies at every point to the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = e^{xy}$.

4

ANSWER SHEET FOR QUESTION 5

EXAM CODE:

- Answer Question 5 by placing a clear mark (either ✓or ×) in the box that corresponds to your answer of the table below. Please, mark your answer ONCE only.
- In order to provide a fair exam, that does not encourage random answering, the following system is applied to calculate your points on question 5. For each correct answer you will be awarded 1 point. For each incorrect answer you will lose 1 point. If the number of incorrect answers is higher than the number of correct answers, then the total mark awarded for this question be 0.

	True	False
a.	x	
b.		X
c.		х
d.	X	
e.		X
f.	X	
g.	X	
h.		X
i.		х
j.		Х
k.	X	
l.	X	
m.	X	
n.	X	
о.		X
p.		X
q.		X
r.	х	
s.		х
t.		х