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Problem 1

a. We will first find a 95% confidence interval for logit[π(2)] = β0 + 2β1 + 4β2. A point
estimate of this quantity is

logit[π̂(2)] = β̂0 + 2β̂1 + 4β̂2
= −6.0 + 2 · 1.0 + 4 · 0.5
= −2.0.

Since

Var[logit(π̂(2))] = Var(β̂0) + 4Var(β̂1) + 16Var(β̂2)

+ 4Cov(β̂0, β̂1) + 8Cov(β̂0, β̂2) + 16Cov(β̂1, β̂2),

the squared standard error of logit(π̂(2)) is

V̂ar[logit(π̂(2))] = V̂ar(β̂0) + 4V̂ar(β̂1) + 16V̂ar(β̂2)

+ 4Ĉov(β̂0, β̂1) + 8Ĉov(β̂0, β̂2) + 16Ĉov(β̂1, β̂2)
= 1 · 0.01 + 4 · 0.02 + 16 · 0.02− 4 · 0.01− 8 · 0.01− 16 · 0.01
= 0.13.

Using the normal quantile z0.025 =
√
χ2
1(0.05) =

√
3.8415 = 1.96, this gives an

approximate 95% confidence interval

(−2.0− 1.96
√

0.13,−2.0 + 1.96
√

0.13) = (−2.7067,−1.2933) (1)

for logit[π(2)]. The corresponding approximate 95% confidence interval for π(2) is
obtained by transforming the left and right end points of (1) by the inverse of the
logit transformation, i.e.(

exp(−2.7067)

1 + exp(−2.7067)
,

exp(−1.2933)

1 + exp(−1.2933)

)
= (0.063, 0.215).

b. The odds of dying, for a person with blood concentration x mmHg of the gas, is

π(x)

1− π(x)
= exp(β0 + xβ1 + x2β2).
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Taking the ratio of this expression for x = 2 and x = 1 we obtain the odds ratio

OR =
π(2)/(1− π(2))

π(1)/(1− π(1))
=

exp(β0 + 2β1 + 4β2)

exp(β0 + β1 + β2)
= exp(β1 + 3β2)

of dying between two persons with concentrations 2 and 1 mmHg. The sought for
log odds ratio is therefore

log OR = β1 + 3β2. (2)

c. We will first compute an approximate 95% confidence interval for the log odds ratio
in (2). We estimate this quantity by

log ÔR = β̂1 + 3β̂2 = 1.0 + 3 · 0.5 = 2.5,

and then find the variance

Var(log ÔR) = Var(β̂1) + 9Var(β̂2) + 6Cov(β̂1, β̂2) (3)

of this estimate. Plugging in the estimated variances and covariances into the last
expression, we obtain the squared standard error

V̂ar(log ÔR) = V̂ar(β̂1) + 9V̂ar(β̂2) + 6Ĉov(β̂1, β̂2)
= 0.02 + 9 · 0.02− 6 · 0.01
= 0.14

of log ÔR. This gives an approximate 95% confidence interval

(2.5− 1.96
√

0.14, 2.5 + 1.96
√

0.14) = (1.7666, 3.2334)

for log OR, and a corresponding approximate 95% confidence interval

(exp(1.7666), exp(3.2334)) = (5.85, 25.36)

for OR.

Problem 2

a. Let nik be the number of observations in cell (i, k), which is an observation of the
random variable Nik. The joint distribution of all cell counts is multinomial

N = (Nik)2i,k=0 ∼ Mult(500, (πik)2i,k=0).

Since the cell probabilities sum to 1 (
∑2

i,k=0 πik = 1), there are 8 free parameters,
for instance

θ = (π00, π01, π02, π10, π11, π12, π20, π21).

This gives a likelihood

l(θ) = 500!∏2

i,k=0
nik!

∏
(i,k)6=(2,2) π

nik
ik · (1−

∑
(i,k)6=(2,2) πik)n22

= 500!
30!60!28!47!120!89!16!60!50!

π30
00π

60
01π

28
02π

47
10π

120
11 π

89
12π

16
20π

60
21(1−∑(i,k)6=(2,2) πik)50.
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b. The expected cell counts equal µik = E(Nik) = n++πi+π+k under H0, which we
estimate by

µ̂ik = n++ ·
ni+

n++

· n+k

n++

=
ni+n+k

n++

,

for instance

µ̂00 =
118 · 93

500
= 21.95

for cell (0, 0). Continuing in this way for the other 8 cells we obtain the following
values of µ̂ik:

Values of µ̂ik under H0:
k

i 0 1 2 Sum
0 21.95 56.64 39.41 118
1 47.62 122.88 85.50 256
2 23.44 60.48 42.08 126

Sum 93 240 167 500

This gives a X2-statistic

X2 =
2∑

i,k=0

(nik − µ̂ik)2

µ̂ik

=
(30− 21.95)2

21.95
+ . . .

(50− 42.08)2

42.08
= 10.53.

Since the saturated model has 8 − 4 = 4 more parameters than the independence
model, and X2 > χ2

4(0.05) = 9.49, we reject H0 at level 5%.

c. In order to estimate p, we notice that there are 1000 copies of gene I, two for each
individual. Under H ′0 we have that each copy of gene I is either A with probability
p, or a with probability 1 − p, independently between gene copies. Since there are
N1+ + 2N2+ gene copies that equal A it follows that N1+ + 2N2+ ∼ Bin(1000, p).
Therefore, the maximum likelihood estimate of p is

p̂ =
n1+ + 2n2+

1000
=

256 + 2 · 126

1000
= 0.508. (4)

In a similar way we find a maximum likelihood estimate

q̂ =
n+1 + 2n+2

1000
=

240 + 2 · 167

1000
= 0.574 (5)

of q. Since the expected cell counts under H ′0 are

µik = 500 ·
(

2

i

)
(1− p)2−ipi ·

(
2

k

)
(1− q)2−kqk, (6)

we simply plug (4) and (5) into (6), and find that

µ̂ik = 500 ·
(

2

i

)
(1− p̂)2−ip̂i ·

(
2

k

)
(1− q̂)2−kq̂k,

for all i, k ∈ {0, 1, 2}. For instance, cell (0, 0) has

µ̂00 = 500(1− p̂)2(1− q̂)2 = 500(1− 0.508)2(1− 0.574)2 = 21.96.

Continuing in this way for the other 8 cells, we obtain the following values of µ̂ik:
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Values of µ̂ik under H ′0:
k

i 0 1 2 Sum
0 21.96 59.19 39.88 121.03
1 45.36 122.23 82.35 249.94
2 23.42 63.10 42.51 129.03

Sum 90.74 244.52 164.74 500

This gives a X2-statistic that equals

2∑
i,k=0

(nik − µ̂ik)2

µ̂ik

=
(30− 21.96)2

21.96
+ . . .

(50− 42.51)2

42.51
= 10.95.

There are only 2 parameters p and q under H ′0, and therefore the saturated model
has 8− 2 = 6 more parameters. Since X2 < χ2

6(0.05) = 12.59, we do not reject H ′0
at level 5%.

Problem 3

a. For the loglinear model M = (GI,GL,GS, IL, IS, LS), we have that

µgils = exp(λ+ λGg + λIi + λLl + λSs + λGI
gi + λGL

gl + λGS
gs + λILil + λISis + λLSls ),

for all cells g, i, l, s ∈ {0, 1}. If g = i = l = s = 0 are chosen as baseline levels, then
all loglinear parameters equal 0 for which at least index is 0. This gives a parameter
vector with the remaining nonzero loglinear parameters

β = (λ, λG1 , λ
I
1, λ

L
1 , λ

S
1 , λ

GI
11 , λ

GL
11 , λ

GS
11 , λ

IL
11 , λ

IS
11 , λ

LS
11 ).

The number of parameters is p(M) = 11.

b. All of the listed models in the tables are balanced, and all four categorical variables
are binary. Therefore, each model has 1 baseline parameter, 4 main effect parameters
(1 per main effect), 1 = (2−1) · (2−1) parameter per second order association, and
1 = (2−1)·(2−1)·(2−1) parameter per third order association. Adding the number
of baseline, main effect, second order, and third order association parameters, we
find the total number of parameters

p(G, I, L, S) = 1 + 4 + 0 + 0 = 5,
p(GI,GL,GS, IL, IS, LS) = 1 + 4 + 6 + 0 = 11,

p(GIL,GS, IS, LS) = 1 + 4 + 6 + 1 = 12,
p(GIS,GL, IL, LS) = 1 + 4 + 6 + 1 = 12,
p(GLS,GI, IL, IS) = 1 + 4 + 6 + 1 = 12,
p(ILS,GI,GL,GS) = 1 + 4 + 6 + 1 = 12,

p(GIL,GIS,GLS, ILS) = 1 + 4 + 6 + 4 = 15

of all models.
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c. Let M1 = (GILS) refer to the saturated model, with 24 = 16 parameters. Akaike’s
Information Criterion of model M is

AIC(M) = −2L(M) + 2p(M)
= −2[L(M)− L(M1)] + 2p(M)− 2L(M1)
= G2(M) + 2p(M)− 2L(M1),

where L(M) and G2(M) is the log likelihood and deviance of model M . We select
the best model, according to the AIC-criterion, by minimizing AIC(M), which is
equivalent to minimizing G2(M) + 2p(M). We found the number of parameters
p(M) of all models in b). This makes it possible to fill in the second column of the
given table, and then add a third column:

Model M G2(M) p(M) G2(M) + 2p(M)
(G, I, L, S) 2792.8 5 2802.8
(GI,GL,GS, IL, IS, LS) 23.4 11 45.4
(GIL,GS, IS, LS) 18.6 12 42.6
(GIS,GL, IL, LS) 22.8 12 46.8
(GLS,GI, IL, IS) 7.5 12 31.5
(ILS,GI,GL,GS) 20.6 12 44.6
(GIL,GIS,GLS, ILS) 1.33 15 31.3

Since M = (GIL,GIS,GLS, ILS) minimizes G2(M) + 2p(M), this is the model
chosen by the AIC-criterion.

d. In the first step of backward elimination (BE), the largest model among those listed
in the table, M ′

1 = (GIL,GIS,GLS, ILS), is tested against each one of the four
models M for which three second order associations have been removed from M ′

1,
by means of a likelihood ratio test. The log likelihood ratios of these four tests are

G2(M |M ′
1) = −2[L(M)− L(M ′

1)]
= G2(M)−G2(M ′

1)

=


18.6− 1.33 = 17.27, M = (GIL,GS, IS, LS),
22.8− 1.33 = 21.47, M = (GIS,GL, IL, LS),
7.5− 1.33 = 6.17, M = (GLS,GI, IL, IS),
20.6− 1.33 = 19.27, M = (ILS,GI,GL,GS),

respectively. In all of these tests, the null hypothesis

H0 : model M holds

is rejected if G2(M |M ′
1) > χ2

3(0.05) = 7.81, where 3 = 15 − 12 is the num-
ber of parameters being tested. We find that H0 is not rejected for model M =
(GLS,GI, IL, IS), whereas H0 is rejected for the other three models with one third
order association. Therefore (GLS,GI, IL, IS) is selected in the first step of the
BE-scheme. In the second step of the BE-scheme we test

H0 : M0 = (GI,GL,GS, IL, IS, LS)
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against the alternative that M = (GLS,GI, IL, IS) holds but not M0. This gives
a log likelihood ratio

G2(M0|M) = G2(M0)−G2(M)
= 23.4− 7.5
= 15.9
> χ2

1(0.05)
= 3.84,

since 1 = 12− 11 parameter is tested. The null hypothesis is rejected in this second
step, and therefore the BE-scheme stops, with (GLS,GI, IL, IS) as the chosen
model.

Problem 4

a. Let πgils = µgils/µ++++ be the probability of cell (g, i, l, s) for multinomial sam-
pling when we condition on the total number of observations of the Poisson model
(GI,GL,GS, IL, IS, LS). Regarding I as the outcome variable and G,L, S as pre-
dictor variables of this mutinomial model, we find that I|G,L, S is an ANOVA type
logistic regression model, since

logitP (I = 1|G = g, L = l, S = s)
= log[P (I = 1|G = g, L = l, S = s)/P (I = 0|G = g, L = l, S = s)]
= log[(πg1ls/πg+ls)/(πg0ls/πg+ls)]
= log(πg1ls/πg0ls)
= log(µg1ls/µg0ls)
= log(µg1ls)− log(µg0ls)
= λ+ λGg + λI1 + λLl + λSs + λGI

g1 + λGL
gl + λGS

gs + λIL1l + λIS1s + λLSls
−(λ+ λGg + λI0 + λLl + λSs + λGI

g0 + λGL
gl + λGS

gs + λIL0l + λIS0s + λLSls )
= α + βG

g + βL
l + βS

s ,

(7)

with
α = λI1 − λI0 = λI1,
βG
g = λGI

g1 − λGI
g0 = λGI

g1 ,
βL
l = λIL1l − λIL0l = λIL1l ,
βS
s = λIS1s − λIS0s = λIS1s .

In the last step we assumed that g = i = l = s = 0 are baseline levels, putting to
zero all loglinear parameters with at least one 0 index. Then all effect parameters
βG
0 = βL

0 = βS
0 = 0 vanish, and the remaining four nonzero parameters of the logistic

regression model, are
β = (α, βG

1 , β
L
1 , β

S
1 ).

b. The conditional odds ratio of injury between those that use safety belt and those
that do not, conditional on gender and location, is

θIS(gl) =
P (I = 1|S = 1, G = g, L = l)/P (I = 0|S = 1, G = g, L = l)

P (I = 1|S = 0, G = g, L = l)/P (I = 0|S = 0, G = g, L = l)
. (8)
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It follows from (7) that

log θIS(gl) = logitP (I = 1|S = 1, G = g, L = l)− logitP (I = 1|S = 0, G = g, L = l)
= α + βG

g + βL
l + βS

1 − (α + βG
g + βL

l + βS
0 )

= βS
1 − βS

0

= βS
1

= λIS11

when i = s = 0 are chosen as baseline levels of injury and safety belt use. Equiva-
lently,

θIS(gl) = exp(λIS11 ). (9)

c. There is homogeneous association between injury I and safety belt use S if the
conditional odds ratio θIS(gl) does not depend on the levels g and l of gender G and
location L. It follows from (9) that model (GI,GL,GS, IL, IS, LS) has homoge-
neous association, since the right hand side of this equation does not depend on g
or l. Similarly, one shows that all loglinear models M for which I and S are not
involved in any third order association, have homogeneous association between I
and S. Hence, among the loglinear models listed in the table of Problem 3, the ones
with homogeneous association between injury and safety belt use, are (G, I, L, S),
(GI,GL,GS, IL, IS, LS), (GIL,GS, IS, LS), and (GLS,GI, IL, IS).

d. For the loglinear model M0 = (IS, IGL) we have that S and G,L are conditionally
independent given I. In conjunction with Bayes’ Theorem, this gives

P (I = i|S = s,G = g, L = l) = P (S=s|I=i,G=g,L=l)P (I=i|G=g,L=l)
P (S=s|G=g,L=l)

= P (S=s|I=i)P (I=i|G=g,L=l)
P (S=s|G=g,L=l)

.
(10)

Insertion of (10) into the definition (8) of the conditional odds ratio gives

θIS(gl) =
P (S = 1|I = 1)P (S = 0|I = 0)

P (S = 0|I = 1)P (S = 1|I = 0)
, (11)

since all terms P (I = i|G = g, L = l) and P (S = s|G = g, L = l) appear twice,
in the numerator and denominator, and hence cancel out. A second application
of Bayes’ Theorem gives P (S = s|I = i) = P (I = i|S = s)P (S = s)/P (I = i).
Inserting this expression into (11), we find that

θIS(gl) =
P (I = 1|S = 1)P (I = 0|S = 0)

P (I = 0|S = 1)P (I = 1|S = 0)
= θIS,

since all terms P (I = i) and P (S = s) appear twice, in the numerator and deno-
minator, and hence cancel out. From this it follows that the conditional odds ratio
θIS(gl) of having an injury between those that use seat belt and those that don’t, for
model M0 = (IS, IGL), equals the corresponding marginal odds ratio θIS. There is
also an alternative way of showing this (without using Bayes’ Theorem). We start
by noticing that

µgils = AisBgil (12)
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for model M0, with Ais = exp(λ + λIi + λss + λISis ) and Bgil = exp(λGg + λLl + λGI
gi +

λILil +λGL
gl +λGIL

gil ). From the calculations in (7) and (12) we find that the conditional
odds ratio between injury and seat belt use can be expressed as

θIS(gl) =
µg0l0µg1l1

µg0l1µg1l0

=
A00A11

A01A10

,

since all the Bgil-terms cancel out. Similarly, we find that the marginal odds ratio
between injury and seat belt use equals

θIS =
µ+0+0µ+1+1

µ+0+1µ+1+0

=
A00A11

A01A10

,

since µ+i+s = AisB+i+, and all the B+i+-terms cancel out. From the last two
displayed equations, it follows that θIS(gl) = θIS.

We finally estimate the marginal odds ratio from the data set of Problem 3, as

θ̂IS = n+1+1n+0+0

n+1+0n+0+1

= (759+757+380+513)·(7287+3246+10381+6123)
(996+973+812+1084)·(11587+6134+10969+6693)

= 2409·27037
3865·35383

= 0.4763,

which is slightly higher than the estimated conditional odds ratio θ̂IS(gl) = 0.44
between injury and seat belt use for model M = (GI,GL,GS, IL, IS, LS).

Problem 5

a. A 2× 3 contingency table has three 2× 2 subtables:

I = {11, 12, 21, 22},
II = {12, 13, 22, 23},

III = {11, 13, 21, 23}.

The corresponding estimated odds ratios for (a higher degree of) job-satisfaction,
between middle-aged and young people, are

θ̂I = (n11n22)/(n12n21) = (34 · 174)/(53 · 80) = 1.395,

θ̂II = (n12n23)/(n13n22) = (53 · 304)/(88 · 174) = 1.052,

θ̂III = (n11n23)/(n13n21) = (34 · 304)/(88 · 80) = 1.468,

where nij is the number of observations with X = i and Y = j.

b. Since subtables I and II have adjacent columns, their odds ratios are local, whereas
the odds ratio of subtable III is not local. We have that

θ̂III =
n11n23

n13n21

=
n11n22

n12n21

· n12n23

n13n22

= θ̂I · θ̂II. (13)
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c. The number of concordant and discordant pairs are

C = n11(n22 + n23) + n12n23 = 34(174 + 304) + 53 · 304 = 32364,
D = n12n21 + n13(n21 + n22) = 53 · 80 + 88(80 + 174) = 26592,

and consequently

γ̂ =
C −D
C +D

=
32364− 26592

32364 + 26592
= 0.0979. (14)

d. Notice first that

C

D
=
n11n22 + n12n23 + n11n23

n12n21 + n13n22 + n13n21

= wIθ̂I + wIIθ̂II + wIIIθ̂III, (15)

where the weights

wI = n12n21/(n12n21 + n13n22 + n13n21),
wII = n13n22/(n12n21 + n13n22 + n13n21),
wIII = n13n21/(n12n21 + n13n22 + n13n21)

are non-negative and sum to 1. If the two local odds ratios are larger than 1 (θ̂I > 1,
θ̂II > 1), it follows from (13) that the third non-local odds ratio is larger than 1
as well (θ̂III = θ̂I · θ̂II > 1). Since C/D is a weighted average (15) of the three
odds ratios, all of which are greater than 1, we find that C/D > 1. Dividing the
numerator and denominator of (14) by D we finally obtain

γ̂ =
C/D − 1

C/D + 1
> 0.
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