Solutions for Examination Categorical Data Analysis, January 10, 2019

Problem 1

a. We will first find a 95% confidence interval for $\operatorname{logit}[\pi(2)]=\beta_{0}+2 \beta_{1}+4 \beta_{2}$. A point estimate of this quantity is

$$
\begin{aligned}
\operatorname{logit}[\hat{\pi}(2)] & =\hat{\beta}_{0}+2 \hat{\beta}_{1}+4 \hat{\beta}_{2} \\
& =-6.0+2 \cdot 1.0+4 \cdot 0.5 \\
& =-2.0
\end{aligned}
$$

Since

$$
\begin{aligned}
\operatorname{Var}[\operatorname{logit}(\hat{\pi}(2))] & =\operatorname{Var}\left(\hat{\beta}_{0}\right)+4 \operatorname{Var}\left(\hat{\beta}_{1}\right)+16 \operatorname{Var}\left(\hat{\beta}_{2}\right) \\
& +4 \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)+8 \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{2}\right)+16 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right),
\end{aligned}
$$

the squared standard error of $\operatorname{logit}(\hat{\pi}(2))$ is

$$
\begin{aligned}
\widehat{\operatorname{Var}}[\operatorname{logit}(\hat{\pi}(2))] & =\widehat{\operatorname{Var}}\left(\hat{\beta}_{0}\right)+4 \widehat{\operatorname{Var}}\left(\hat{\beta}_{1}\right)+16 \widehat{\operatorname{Var}}\left(\hat{\beta}_{2}\right) \\
& +4 \widehat{\operatorname{Cov}}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)+8 \widehat{\operatorname{Cov}}\left(\hat{\beta}_{0}, \hat{\beta}_{2}\right)+16 \widehat{\operatorname{Cov}}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) \\
& =1 \cdot 0.01+4 \cdot 0.02+16 \cdot 0.02-4 \cdot 0.01-8 \cdot 0.01-16 \cdot 0.01 \\
& =0.13
\end{aligned}
$$

Using the normal quantile $z_{0.025}=\sqrt{\chi_{1}^{2}(0.05)}=\sqrt{3.8415}=1.96$, this gives an approximate 95% confidence interval

$$
\begin{equation*}
(-2.0-1.96 \sqrt{0.13},-2.0+1.96 \sqrt{0.13})=(-2.7067,-1.2933) \tag{1}
\end{equation*}
$$

for $\operatorname{logit}[\pi(2)]$. The corresponding approximate 95% confidence interval for $\pi(2)$ is obtained by transforming the left and right end points of (1) by the inverse of the logit transformation, i.e.

$$
\left(\frac{\exp (-2.7067)}{1+\exp (-2.7067)}, \frac{\exp (-1.2933)}{1+\exp (-1.2933)}\right)=(0.063,0.215) .
$$

b. The odds of dying, for a person with blood concentration $x \mathrm{mmHg}$ of the gas, is

$$
\frac{\pi(x)}{1-\pi(x)}=\exp \left(\beta_{0}+x \beta_{1}+x^{2} \beta_{2}\right) .
$$

Taking the ratio of this expression for $x=2$ and $x=1$ we obtain the odds ratio

$$
\mathrm{OR}=\frac{\pi(2) /(1-\pi(2))}{\pi(1) /(1-\pi(1))}=\frac{\exp \left(\beta_{0}+2 \beta_{1}+4 \beta_{2}\right)}{\exp \left(\beta_{0}+\beta_{1}+\beta_{2}\right)}=\exp \left(\beta_{1}+3 \beta_{2}\right)
$$

of dying between two persons with concentrations 2 and 1 mmHg . The sought for log odds ratio is therefore

$$
\begin{equation*}
\log \mathrm{OR}=\beta_{1}+3 \beta_{2} \tag{2}
\end{equation*}
$$

c. We will first compute an approximate 95% confidence interval for the log odds ratio in (2). We estimate this quantity by

$$
\log \widehat{\mathrm{OR}}=\hat{\beta}_{1}+3 \hat{\beta}_{2}=1.0+3 \cdot 0.5=2.5
$$

and then find the variance

$$
\begin{equation*}
\operatorname{Var}(\log \widehat{\mathrm{OR}})=\operatorname{Var}\left(\hat{\beta}_{1}\right)+9 \operatorname{Var}\left(\hat{\beta}_{2}\right)+6 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) \tag{3}
\end{equation*}
$$

of this estimate. Plugging in the estimated variances and covariances into the last expression, we obtain the squared standard error

$$
\begin{aligned}
\widehat{\operatorname{Var}}(\log \widehat{\mathrm{OR}}) & =\widehat{\operatorname{Var}}\left(\hat{\beta}_{1}\right)+9 \widehat{\operatorname{Var}}\left(\hat{\beta}_{2}\right)+6 \widehat{\operatorname{Cov}}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) \\
& =0.02+9 \cdot 0.02-6 \cdot 0.01 \\
& =0.14
\end{aligned}
$$

of $\log \widehat{O R}$. This gives an approximate 95% confidence interval

$$
(2.5-1.96 \sqrt{0.14}, 2.5+1.96 \sqrt{0.14})=(1.7666,3.2334)
$$

for \log OR, and a corresponding approximate 95% confidence interval

$$
(\exp (1.7666), \exp (3.2334))=(5.85,25.36)
$$

for OR.

Problem 2

a. Let $n_{i k}$ be the number of observations in cell (i, k), which is an observation of the random variable $N_{i k}$. The joint distribution of all cell counts is multinomial

$$
\boldsymbol{N}=\left(N_{i k}\right)_{i, k=0}^{2} \sim \operatorname{Mult}\left(500,\left(\pi_{i k}\right)_{i, k=0}^{2}\right) .
$$

Since the cell probabilities sum to $1\left(\sum_{i, k=0}^{2} \pi_{i k}=1\right)$, there are 8 free parameters, for instance

$$
\boldsymbol{\theta}=\left(\pi_{00}, \pi_{01}, \pi_{02}, \pi_{10}, \pi_{11}, \pi_{12}, \pi_{20}, \pi_{21}\right)
$$

This gives a likelihood

$$
\begin{aligned}
l(\boldsymbol{\theta}) & =\frac{500!}{\prod_{i, k=0}^{2} n_{i k}!} \prod_{(i, k) \neq(2,2)} \pi_{i k}^{n_{i k}} \cdot\left(1-\sum_{(i, k) \neq(2,2)} \pi_{i k}\right)^{n_{22}} \\
& =\frac{50!}{30!60!28!47!120!89!16!60!50!} \pi_{00}^{30} \pi_{01}^{60} \pi_{02}^{28} \pi_{10}^{47} \pi_{11}^{120} \pi_{12}^{89} \pi_{20}^{16} \pi_{21}^{60}\left(1-\sum_{(i, k) \neq(2,2)} \pi_{i k}\right)^{50}
\end{aligned}
$$

b. The expected cell counts equal $\mu_{i k}=E\left(N_{i k}\right)=n_{++} \pi_{i+} \pi_{+k}$ under H_{0}, which we estimate by

$$
\hat{\mu}_{i k}=n_{++} \cdot \frac{n_{i+}}{n_{++}} \cdot \frac{n_{+k}}{n_{++}}=\frac{n_{i+} n_{+k}}{n_{++}},
$$

for instance

$$
\hat{\mu}_{00}=\frac{118 \cdot 93}{500}=21.95
$$

for cell $(0,0)$. Continuing in this way for the other 8 cells we obtain the following values of $\hat{\mu}_{i k}$:

Values of $\hat{\mu}_{i k}$ under $H_{0}:$				
i	k			
	0	1	2	Sum
	21.95	56.64	39.41	118
1	47.62	122.88	85.50	256
2	23.44	60.48	42.08	126
Sum	93	240	167	500

This gives a X^{2}-statistic

$$
X^{2}=\sum_{i, k=0}^{2} \frac{\left(n_{i k}-\hat{\mu}_{i k}\right)^{2}}{\hat{\mu}_{i k}}=\frac{(30-21.95)^{2}}{21.95}+\ldots \frac{(50-42.08)^{2}}{42.08}=10.53 .
$$

Since the saturated model has $8-4=4$ more parameters than the independence model, and $X^{2}>\chi_{4}^{2}(0.05)=9.49$, we reject H_{0} at level 5%.
c. In order to estimate p, we notice that there are 1000 copies of gene I, two for each individual. Under H_{0}^{\prime} we have that each copy of gene I is either A with probability p, or a with probability $1-p$, independently between gene copies. Since there are $N_{1+}+2 N_{2+}$ gene copies that equal A it follows that $N_{1+}+2 N_{2+} \sim \operatorname{Bin}(1000, p)$. Therefore, the maximum likelihood estimate of p is

$$
\begin{equation*}
\hat{p}=\frac{n_{1+}+2 n_{2+}}{1000}=\frac{256+2 \cdot 126}{1000}=0.508 . \tag{4}
\end{equation*}
$$

In a similar way we find a maximum likelihood estimate

$$
\begin{equation*}
\hat{q}=\frac{n_{+1}+2 n_{+2}}{1000}=\frac{240+2 \cdot 167}{1000}=0.574 \tag{5}
\end{equation*}
$$

of q. Since the expected cell counts under H_{0}^{\prime} are

$$
\begin{equation*}
\mu_{i k}=500 \cdot\binom{2}{i}(1-p)^{2-i} p^{i} \cdot\binom{2}{k}(1-q)^{2-k} q^{k}, \tag{6}
\end{equation*}
$$

we simply plug (4) and (5) into (6), and find that

$$
\hat{\mu}_{i k}=500 \cdot\binom{2}{i}(1-\hat{p})^{2-i} \hat{p}^{i} \cdot\binom{2}{k}(1-\hat{q})^{2-k} \hat{q}^{k}
$$

for all $i, k \in\{0,1,2\}$. For instance, cell $(0,0)$ has

$$
\hat{\mu}_{00}=500(1-\hat{p})^{2}(1-\hat{q})^{2}=500(1-0.508)^{2}(1-0.574)^{2}=21.96
$$

Continuing in this way for the other 8 cells, we obtain the following values of $\hat{\mu}_{i k}$:

Values of $\hat{\mu}_{i k}$ under $H_{0}^{\prime}:$				
i	k			
	0	1	2	Sum
	21.96	59.19	39.88	121.03
1	45.36	122.23	82.35	249.94
2	23.42	63.10	42.51	129.03
Sum	90.74	244.52	164.74	500

This gives a X^{2}-statistic that equals

$$
\sum_{i, k=0}^{2} \frac{\left(n_{i k}-\hat{\mu}_{i k}\right)^{2}}{\hat{\mu}_{i k}}=\frac{(30-21.96)^{2}}{21.96}+\ldots \frac{(50-42.51)^{2}}{42.51}=10.95 .
$$

There are only 2 parameters p and q under H_{0}^{\prime}, and therefore the saturated model has $8-2=6$ more parameters. Since $X^{2}<\chi_{6}^{2}(0.05)=12.59$, we do not reject H_{0}^{\prime} at level 5%.

Problem 3

a. For the \log linear model $M=(G I, G L, G S, I L, I S, L S)$, we have that

$$
\mu_{g i l s}=\exp \left(\lambda+\lambda_{g}^{G}+\lambda_{i}^{I}+\lambda_{l}^{L}+\lambda_{s}^{S}+\lambda_{g i}^{G I}+\lambda_{g l}^{G L}+\lambda_{g s}^{G S}+\lambda_{i l}^{I L}+\lambda_{i s}^{I S}+\lambda_{l s}^{L S}\right),
$$

for all cells $g, i, l, s \in\{0,1\}$. If $g=i=l=s=0$ are chosen as baseline levels, then all loglinear parameters equal 0 for which at least index is 0 . This gives a parameter vector with the remaining nonzero loglinear parameters

$$
\boldsymbol{\beta}=\left(\lambda, \lambda_{1}^{G}, \lambda_{1}^{I}, \lambda_{1}^{L}, \lambda_{1}^{S}, \lambda_{11}^{G I}, \lambda_{11}^{G L}, \lambda_{11}^{G S}, \lambda_{11}^{I L}, \lambda_{11}^{I S}, \lambda_{11}^{L S}\right) .
$$

The number of parameters is $p(M)=11$.
b. All of the listed models in the tables are balanced, and all four categorical variables are binary. Therefore, each model has 1 baseline parameter, 4 main effect parameters (1 per main effect), $1=(2-1) \cdot(2-1)$ parameter per second order association, and $1=(2-1) \cdot(2-1) \cdot(2-1)$ parameter per third order association. Adding the number of baseline, main effect, second order, and third order association parameters, we find the total number of parameters

$$
\begin{aligned}
p(G, I, L, S) & =1+4+0+0=5, \\
p(G I, G L, G S, I L, I S, L S) & =1+4+6+0=11, \\
p(G I L, G S, I S, L S) & =1+4+6+1=12, \\
p(G I S, G L, I L, L S) & =1+4+6+1=12, \\
p(G L S, G I, I L, I S) & =1+4+6+1=12, \\
p(I L S, G I, G L, G S) & =1+4+6+1=12, \\
p(G I L, G I S, G L S, I L S) & =1+4+6+4=15
\end{aligned}
$$

of all models.
c. Let $M_{1}=(G I L S)$ refer to the saturated model, with $2^{4}=16$ parameters. Akaike's Information Criterion of model M is

$$
\begin{aligned}
\operatorname{AIC}(M) & =-2 L(M)+2 p(M) \\
& =-2\left[L(M)-L\left(M_{1}\right)\right]+2 p(M)-2 L\left(M_{1}\right) \\
& =G^{2}(M)+2 p(M)-2 L\left(M_{1}\right),
\end{aligned}
$$

where $L(M)$ and $G^{2}(M)$ is the log likelihood and deviance of model M. We select the best model, according to the AIC-criterion, by minimizing $\operatorname{AIC}(M)$, which is equivalent to minimizing $G^{2}(M)+2 p(M)$. We found the number of parameters $p(M)$ of all models in b). This makes it possible to fill in the second column of the given table, and then add a third column:

Model M	$G^{2}(M)$	$p(M)$	$G^{2}(M)+2 p(M)$
(G, I, L, S)	2792.8	5	2802.8
$(G I, G L, G S, I L, I S, L S)$	23.4	11	45.4
$(G I L, G S, I S, L S)$	18.6	12	42.6
$(G I S, G L, I L, L S)$	22.8	12	46.8
$(G L S, G I, I L, I S)$	7.5	12	31.5
$(I L S, G I, G L, G S)$	20.6	12	44.6
$(G I L, G I S, G L S, I L S)$	1.33	15	31.3

Since $M=(G I L, G I S, G L S, I L S)$ minimizes $G^{2}(M)+2 p(M)$, this is the model chosen by the AIC-criterion.
d. In the first step of backward elimination (BE), the largest model among those listed in the table, $M_{1}^{\prime}=(G I L, G I S, G L S, I L S)$, is tested against each one of the four models M for which three second order associations have been removed from M_{1}^{\prime}, by means of a likelihood ratio test. The log likelihood ratios of these four tests are

$$
\begin{aligned}
G^{2}\left(M \mid M_{1}^{\prime}\right) & =-2\left[L(M)-L\left(M_{1}^{\prime}\right)\right] \\
& =G^{2}(M)-G^{2}\left(M_{1}^{\prime}\right) \\
& = \begin{cases}18.6-1.33=17.27, & M=(G I L, G S, I S, L S), \\
22.8-1.33=21.47, & M=(G I S, G L, I L, L S), \\
7.5-1.33=6.17, & M=(G L S, G I, I L, I S), \\
20.6-1.33=19.27, & M=(I L S, G I, G L, G S),\end{cases}
\end{aligned}
$$

respectively. In all of these tests, the null hypothesis

$$
H_{0}: \text { model } M \text { holds }
$$

is rejected if $G^{2}\left(M \mid M_{1}^{\prime}\right)>\chi_{3}^{2}(0.05)=7.81$, where $3=15-12$ is the number of parameters being tested. We find that H_{0} is not rejected for model $M=$ ($G L S, G I, I L, I S$), whereas H_{0} is rejected for the other three models with one third order association. Therefore ($G L S, G I, I L, I S$) is selected in the first step of the BE-scheme. In the second step of the BE-scheme we test

$$
H_{0}: M_{0}=(G I, G L, G S, I L, I S, L S)
$$

against the alternative that $M=(G L S, G I, I L, I S)$ holds but not M_{0}. This gives a log likelihood ratio

$$
\begin{aligned}
G^{2}\left(M_{0} \mid M\right) & =G^{2}\left(M_{0}\right)-G^{2}(M) \\
& =23.4-7.5 \\
& =15.9 \\
& >\chi_{1}^{2}(0.05) \\
& =3.84,
\end{aligned}
$$

since $1=12-11$ parameter is tested. The null hypothesis is rejected in this second step, and therefore the BE-scheme stops, with ($G L S, G I, I L, I S$) as the chosen model.

Problem 4

a. Let $\pi_{\text {gils }}=\mu_{\text {gils }} / \mu_{++++}$be the probability of cell (g, i, l, s) for multinomial sampling when we condition on the total number of observations of the Poisson model ($G I, G L, G S, I L, I S, L S$). Regarding I as the outcome variable and G, L, S as predictor variables of this mutinomial model, we find that $I \mid G, L, S$ is an ANOVA type logistic regression model, since

$$
\begin{align*}
& \operatorname{logit} P(I=1 \mid G=g, L=l, S=s) \\
& \quad=\log [P(I=1 \mid G=g, L=l, S=s) / P(I=0 \mid G=g, L=l, S=s)] \\
& \quad=\log \left[\left(\pi_{g 1 l s} / \pi_{g+l s}\right) /\left(\pi_{g 0 l s} / \pi_{g+l s}\right)\right] \\
& \quad=\log \left(\pi_{g 1 l s} / \pi_{g 0 l s}\right) \\
& \quad=\log \left(\mu_{g 1 l s} / \mu_{g 0 l s}\right) \tag{7}\\
& \quad=\log \left(\mu_{g 1 l s}\right)-\log \left(\mu_{g 0 l s}\right) \\
& \quad=\lambda+\lambda_{g}^{G}+\lambda_{1}^{I}+\lambda_{l}^{L}+\lambda_{s}^{S}+\lambda_{g 1}^{G I}+\lambda_{g l}^{G L}+\lambda_{g s}^{G S}+\lambda_{1 l}^{I L}+\lambda_{1 s}^{I S}+\lambda_{l s}^{L S} \\
& \quad-\left(\lambda+\lambda_{g}^{G}+\lambda_{0}^{I}+\lambda_{l}^{L}+\lambda_{s}^{S}+\lambda_{g 0}^{G I}+\lambda_{g l}^{G L}+\lambda_{g s}^{G S}+\lambda_{0 l}^{I L}+\lambda_{0 s}^{I S}+\lambda_{l s}^{L S}\right) \\
& \quad=\alpha+\beta_{g}^{G}+\beta_{l}^{L}+\beta_{s}^{S},
\end{align*}
$$

with

$$
\begin{aligned}
\alpha & =\lambda_{1}^{I}-\lambda_{0}^{I}=\lambda_{1}^{I}, \\
\beta_{g}^{G} & =\lambda_{g 1}^{G I}-\lambda_{g 0}^{G I}=\lambda_{g 1}^{G I}, \\
\beta_{l}^{L} & =\lambda_{1 l}^{I L}-\lambda_{0 l}^{I L}=\lambda_{1 l}^{I L}, \\
\beta_{s}^{S} & =\lambda_{1 s}^{I S}-\lambda_{0 s}^{I S}=\lambda_{1 s}^{I S} .
\end{aligned}
$$

In the last step we assumed that $g=i=l=s=0$ are baseline levels, putting to zero all \log linear parameters with at least one 0 index. Then all effect parameters $\beta_{0}^{G}=\beta_{0}^{L}=\beta_{0}^{S}=0$ vanish, and the remaining four nonzero parameters of the logistic regression model, are

$$
\boldsymbol{\beta}=\left(\alpha, \beta_{1}^{G}, \beta_{1}^{L}, \beta_{1}^{S}\right)
$$

b. The conditional odds ratio of injury between those that use safety belt and those that do not, conditional on gender and location, is

$$
\begin{equation*}
\theta_{I S(g l)}=\frac{P(I=1 \mid S=1, G=g, L=l) / P(I=0 \mid S=1, G=g, L=l)}{P(I=1 \mid S=0, G=g, L=l) / P(I=0 \mid S=0, G=g, L=l)} \tag{8}
\end{equation*}
$$

It follows from (7) that

$$
\begin{aligned}
\log \theta_{I S(g l)} & =\operatorname{logit} P(I=1 \mid S=1, G=g, L=l)-\operatorname{logit} P(I=1 \mid S=0, G=g, L=l) \\
& =\alpha+\beta_{g}^{G}+\beta_{l}^{L}+\beta_{1}^{S}-\left(\alpha+\beta_{g}^{G}+\beta_{l}^{L}+\beta_{0}^{S}\right) \\
& =\beta_{1}^{S}-\beta_{0}^{S} \\
& =\beta_{1}^{S} \\
& =\lambda_{11}^{I S}
\end{aligned}
$$

when $i=s=0$ are chosen as baseline levels of injury and safety belt use. Equivalently,

$$
\begin{equation*}
\theta_{I S(g l)}=\exp \left(\lambda_{11}^{I S}\right) \tag{9}
\end{equation*}
$$

c. There is homogeneous association between injury I and safety belt use S if the conditional odds ratio $\theta_{I S(g l)}$ does not depend on the levels g and l of gender G and location L. It follows from (9) that model ($G I, G L, G S, I L, I S, L S$) has homogeneous association, since the right hand side of this equation does not depend on g or l. Similarly, one shows that all loglinear models M for which I and S are not involved in any third order association, have homogeneous association between I and S. Hence, among the loglinear models listed in the table of Problem 3, the ones with homogeneous association between injury and safety belt use, are (G, I, L, S), $(G I, G L, G S, I L, I S, L S),(G I L, G S, I S, L S)$, and $(G L S, G I, I L, I S)$.
d. For the loglinear model $M_{0}=(I S, I G L)$ we have that S and G, L are conditionally independent given I. In conjunction with Bayes' Theorem, this gives

$$
\begin{align*}
P(I=i \mid S=s, G=g, L=l) & =\frac{P(S=s \mid I=i, G=g, L=l) P(I=i \mid G=g, L=l)}{P(S=s \mid G-g, L=l)} \\
& =\frac{P(S=s \mid I=i) P(I=i G=g=L=l)}{P(S=s \mid G=g, L=l)} . \tag{10}
\end{align*}
$$

Insertion of (10) into the definition (8) of the conditional odds ratio gives

$$
\begin{equation*}
\theta_{I S(g l)}=\frac{P(S=1 \mid I=1) P(S=0 \mid I=0)}{P(S=0 \mid I=1) P(S=1 \mid I=0)} \tag{11}
\end{equation*}
$$

since all terms $P(I=i \mid G=g, L=l)$ and $P(S=s \mid G=g, L=l)$ appear twice, in the numerator and denominator, and hence cancel out. A second application of Bayes' Theorem gives $P(S=s \mid I=i)=P(I=i \mid S=s) P(S=s) / P(I=i)$. Inserting this expression into (11), we find that

$$
\theta_{I S(g l)}=\frac{P(I=1 \mid S=1) P(I=0 \mid S=0)}{P(I=0 \mid S=1) P(I=1 \mid S=0)}=\theta_{I S}
$$

since all terms $P(I=i)$ and $P(S=s)$ appear twice, in the numerator and denominator, and hence cancel out. From this it follows that the conditional odds ratio $\theta_{I S(g l)}$ of having an injury between those that use seat belt and those that don't, for model $M_{0}=(I S, I G L)$, equals the corresponding marginal odds ratio $\theta_{I S}$. There is also an alternative way of showing this (without using Bayes' Theorem). We start by noticing that

$$
\begin{equation*}
\mu_{g i l s}=A_{i s} B_{g i l} \tag{12}
\end{equation*}
$$

for model M_{0}, with $A_{i s}=\exp \left(\lambda+\lambda_{i}^{I}+\lambda_{s}^{s}+\lambda_{i s}^{I S}\right)$ and $B_{g i l}=\exp \left(\lambda_{g}^{G}+\lambda_{l}^{L}+\lambda_{g i}^{G I}+\right.$ $\left.\lambda_{i l}^{I L}+\lambda_{g l}^{G L}+\lambda_{g i l}^{G I L}\right)$. From the calculations in (7) and (12) we find that the conditional odds ratio between injury and seat belt use can be expressed as

$$
\theta_{I S(g l)}=\frac{\mu_{g 000} \mu_{g 1 l 1}}{\mu_{g 001} \mu_{g 100}}=\frac{A_{00} A_{11}}{A_{01} A_{10}},
$$

since all the $B_{\text {gil }}$-terms cancel out. Similarly, we find that the marginal odds ratio between injury and seat belt use equals

$$
\theta_{I S}=\frac{\mu_{+0+0} \mu_{+1+1}}{\mu_{+0+1} \mu_{+1+0}}=\frac{A_{00} A_{11}}{A_{01} A_{10}},
$$

since $\mu_{+i+s}=A_{i s} B_{+i+}$, and all the B_{+i+}-terms cancel out. From the last two displayed equations, it follows that $\theta_{I S(g l)}=\theta_{I S}$.

We finally estimate the marginal odds ratio from the data set of Problem 3, as

$$
\begin{aligned}
\hat{\theta}_{I S} & =\frac{n_{+1+1} n_{+0+0}}{n_{+1}+0 n_{+0+1}} \\
& =\frac{(759+757+380+513) \cdot(7287+3246+10381+6123)}{(996+973+812+1084) \cdot(11587+6134+10969+6693)} \\
& =\frac{2409 \cdot 27037}{3865 \cdot 35383} \\
& =0.4763
\end{aligned}
$$

which is slightly higher than the estimated conditional odds ratio $\hat{\theta}_{I S(g l)}=0.44$ between injury and seat belt use for model $M=(G I, G L, G S, I L, I S, L S)$.

Problem 5

a. A 2×3 contingency table has three 2×2 subtables:

$$
\begin{aligned}
\mathrm{I} & =\{11,12,21,22\}, \\
\mathrm{II} & =\{12,13,22,23\}, \\
\mathrm{III} & =\{11,13,21,23\} .
\end{aligned}
$$

The corresponding estimated odds ratios for (a higher degree of) job-satisfaction, between middle-aged and young people, are

$$
\begin{aligned}
\hat{\theta}_{\mathrm{I}} & =\left(n_{11} n_{22}\right) /\left(n_{12} n_{21}\right)=(34 \cdot 174) /(53 \cdot 80)=1.395, \\
\hat{\theta}_{\mathrm{II}} & =\left(n_{12} n_{23}\right) /\left(n_{13} n_{22}\right)=(53 \cdot 304) /(88 \cdot 174)=1.052, \\
\hat{\theta}_{\mathrm{III}} & =\left(n_{11} n_{23}\right) /\left(n_{13} n_{21}\right)=(34 \cdot 304) /(88 \cdot 80)=1.468,
\end{aligned}
$$

where $n_{i j}$ is the number of observations with $X=i$ and $Y=j$.
b. Since subtables I and II have adjacent columns, their odds ratios are local, whereas the odds ratio of subtable III is not local. We have that

$$
\begin{equation*}
\hat{\theta}_{\mathrm{III}}=\frac{n_{11} n_{23}}{n_{13} n_{21}}=\frac{n_{11} n_{22}}{n_{12} n_{21}} \cdot \frac{n_{12} n_{23}}{n_{13} n_{22}}=\hat{\theta}_{\mathrm{I}} \cdot \hat{\theta}_{\mathrm{II}} . \tag{13}
\end{equation*}
$$

c. The number of concordant and discordant pairs are

$$
\begin{aligned}
& C=n_{11}\left(n_{22}+n_{23}\right)+n_{12} n_{23}=34(174+304)+53 \cdot 304=32364, \\
& D=n_{12} n_{21}+n_{13}\left(n_{21}+n_{22}\right)=53 \cdot 80+88(80+174)=26592,
\end{aligned}
$$

and consequently

$$
\begin{equation*}
\hat{\gamma}=\frac{C-D}{C+D}=\frac{32364-26592}{32364+26592}=0.0979 \tag{14}
\end{equation*}
$$

d. Notice first that

$$
\begin{equation*}
\frac{C}{D}=\frac{n_{11} n_{22}+n_{12} n_{23}+n_{11} n_{23}}{n_{12} n_{21}+n_{13} n_{22}+n_{13} n_{21}}=w_{\mathrm{I}} \hat{\theta}_{\mathrm{I}}+w_{\mathrm{II}} \hat{\theta}_{\mathrm{II}}+w_{\mathrm{III}} \hat{\theta}_{\mathrm{III}} \tag{15}
\end{equation*}
$$

where the weights

$$
\begin{aligned}
w_{\mathrm{I}} & =n_{12} n_{21} /\left(n_{12} n_{21}+n_{13} n_{22}+n_{13} n_{21}\right), \\
w_{\text {II }} & =n_{13} n_{22} /\left(n_{12} n_{21}+n_{13} n_{22}+n_{13} n_{21}\right), \\
w_{\text {III }} & =n_{13} n_{21} /\left(n_{12} n_{21}+n_{13} n_{22}+n_{13} n_{21}\right)
\end{aligned}
$$

are non-negative and sum to 1 . If the two local odds ratios are larger than $1\left(\hat{\theta}_{\mathrm{I}}>1\right.$, $\hat{\theta}_{\text {II }}>1$), it follows from (13) that the third non-local odds ratio is larger than 1 as well $\left(\hat{\theta}_{\text {III }}=\hat{\theta}_{\mathrm{I}} \cdot \hat{\theta}_{\text {II }}>1\right)$. Since C / D is a weighted average (15) of the three odds ratios, all of which are greater than 1 , we find that $C / D>1$. Dividing the numerator and denominator of (14) by D we finally obtain

$$
\hat{\gamma}=\frac{C / D-1}{C / D+1}>0 .
$$

