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Problem 1

a. The null and alternative hypotheses are

H0 : P (Y = 1|X = 0) = P (Y = 1|X = 1),
Ha : P (Y = 1|X = 0) < P (Y = 1|X = 1),

(1)

for a one-sided test, since the aim is to test whether smoking does not change (H0)
or increases (Ha) the risk of lung cancer. This is equivalent to testing

H0 : θ = 1,
Ha : θ > 1,

(2)

where
θ = P (Y=1|X=1)/[1−P (Y=1|X=1)]

P (Y=1|X=0)/[1−P (Y=1|X=0)]

= P (Y=1|X=1)/P (Y=0|X=1)
P (Y=1|X=0)/P (Y=0|X=0)

(3)

is the odds ratio of lung cancer between those that smoke and those that don’t.
Bayes’ Theorem implies P (Y = j|X = i) = P (X = i|Y = j)P (Y = j)/P (X = i).
We insert this formula into to all four terms that appear on the right hand side of
(3), and notice after rearrangement that each P (Y = j) and P (X = i) term appears
twice, in the numerator and denominator, and hence cancels out. This implies that

θ =
P (X = 1|Y = 1)/P (X = 0|Y = 1)

P (X = 1|Y = 0)/P (X = 0|Y = 0)
=
π1/(1− π1)
π0(1− π0)

(4)

can be expressed in terms of π0 and π1, two quantities that can be estimated in a
case-control study.

b. The sought for null distribution of N11 is hyptergeometric, with

P (N11 = n11|H0, N1+ = 6) =

(
10
n11

)
·
(

10
6−n11

)
(
20
6

) , (5)

for n11 = 0, 1, . . . , 6.
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c. Since n11 = 5, we use (5) in order to find the one-sided

P -value = P (N11 ≥ 5|H0, N1+ = 6)
= P (N11 = 5|H0, N1+ = 6) + P (N11 = 6|H0, N1+ = 6)

=
(10

5 )·(10
1 )

(20
6 )

+
(10

6 )·(10
0 )

(20
6 )

= 252·10+210·1
38760

= 2730
38760

= 0.0704.

d. Since the number of smokers in each column have independent binomial distributions
N10 ∼ Bin(10, π0) and N11 ∼ Bin(10, π1), it follows that

P (N11 = n11|θ,N1+ = 6) = P (N10 = 6− n11, N11 = n11|N1+ = 6)
∝ P (N10 = 6− n11, N11 = n11)
= P (N10 = 6− n11)P (N11 = n11)

=
(

10
6−n11

)
π6−n11
0 (1− π0)4+n11 ·

(
10
n11

)
πn11
1 (1− π1)10−n11

∝
(

10
6−n11

)(
10
n11

)
θn11 ,

(6)

where in the first step we dropped θ in the notation for conditional probabilities,
and in the second and lasts steps the proportionality constants are independent of
n11. In the last step of (6) we also used (4). Since the probabilities in (6) must sum
to 1, we find that

P (N11 = n11|θ,N1+ = 6) =

(
10

6−n11

)(
10
n11

)
θn11∑6

k=0

(
10
6−k

)(
10
k

)
θk
,

for n11 = 0, . . . , 6, which simplifies to (5) when θ = 1.

Problem 2

a. Since N10 ∼ Bin(50, π0) and N11 ∼ Bin(50, π1) have independent binomial distribu-
tions, the maximum likelihood estimate of ∆ is

∆̂ = π̂1 − π̂0 =
n11

n1

− n10

n0

=
25

50
− 5

50
= 0.4,

with variance

Var(∆̂) = Var(π̂0) + Var(π̂1) =
π0(1− π0)

n0

+
π1(1− π1)

n1

and standard error

SE(∆̂) =
√

V̂ar(∆̂)

=
√

π̂0(1−π̂0)
n0

+ π̂1(1−π̂1)
n1

=
√

0.5(1−0.5)
50

+ 0.1(1−0.1)
50

= 0.0825.
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The Wald-based test statistic is

zW =
∆̂

SE(∆̂)
=

0.4

0.0825
= 4.85.

Since |zW | > 1.96 = z0.025, the 0.975-quantile of a standard normal distribution, we
reject H0 at level 5%. This is in contrast to Problem 1c), where the null hypothesis
was not rejected (P -value larger than 0.05), even though that test was one-sided
(which in this case makes it easier to reject the null hypothesis). The main reason
why H0 was not rejected Problem 1c) was the small data set (five times as small
compared to Problem 2), which makes it harder to detect correlation between lung
cancer and smoking.

b. The maximum likelihood estimator of r is

r̂ =
π̂1
π̂0

=
0.5

0.1
= 5.

By means of a first order Taylor expansion, we have that

log(r̂) = log(π̂1)− log(π̂0)
≈ log(π1) + π̂1−π1

π1
− log(π0)− π̂0−π0

π0
.

Consequently, the variance of log(r̂) satisfies

Var[log(r̂)] ≈ Var
(
π̂0−π0
π0

)
+ Var

(
π̂1−π1
π1

)
= Var(π̂0)

π2
0

+ Var(π̂1)
π2
1

= π0(1−π0)
n0π2

0
+ π1(1−π1)

n1π2
1

= 1−π0
n0π0

+ 1−π1
n1π1

.

(7)

c. The standard error of log(r̂) is obtained by plugging in estimates of π0 and π1 into
the variance formula (7) and then taking the square root. That is,

SE[log(r̂)] =
√

V̂ar[log(r̂)]

=
√

1−π̂0
n0π̂0

+ 1−π̂1
n1π̂1

=
√

n00

n0n10
+ n01

n1n11

=
√

45
50·5 + 25

50·25
=
√

0.2
= 0.4472.

This gives a Wald-based confidence interval

(log(r̂)− 1.96 · SE[log(r̂)], log(r̂) + 1.96 · SE[log(r̂)])
= (log(5)− 1.96 · 0.4472, log(5) + 1.96 · 0.4472)
= (0.733, 2.486)

for log(r) with approximate coverage probability 95%. Applying the exponential
transformation to both sides of this interval, we finally obtain a confidence interval

(exp(0.733), exp(2.486)) = (2.081, 12.013)

for r with approximate coverage probability 95%. Since 1 does not belong to this
interval, the null hypothesis r = 1 (or equivalently ∆ = 0) is rejected, as in Problem
2a).
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Problem 3

a. The loglinear parametrization of (XY, Y Z) is

µijk = exp(λ+ λXi + λYj + λZk + λXYij + λY Zjk ) (8)

for 1 ≤ i, j, k ≤ 2. Assume that X = 1, Y = 1, and Z = 1 are chosen as baseline
levels. Then those loglinear parameters are put to zero for which at least one index
i, j or k equals 1. The remaining 6 parameters are

β = (λ, λX2 , λ
Y
2 , λ

Z
2 , λ

XY
22 , λY Z22 ). (9)

b. One possible solution is to look at the cell probabilities πijk = µijk/µ+++. Since X
and Z are conditionally independent given Y for model (XY, Y Z), it follows that

πijk = π+j+πik|j = π+j+πij+|jπ+jk|j = π+j+ ·
πij+
π+j+

· π+jk
π+j+

=
πij+π+jk
π+j+

,

and hence

µijk = µ+++πijk = µ+++ ·
µij+
µ+++

· µ+jk

µ+++
µ+j+

µ+++

=
µij+µ+jk

µ+j+

. (10)

As an alternative proof, one may start writing (8) as a product µijk = AijBjk of two
terms Aij = exp(λ+ λXi + λYj + λXYij ) and Bjk = exp(λZk + λY Zjk ). Then

µij+µ+jk

µ+j+

=
AijBj+ · A+jBjk

A+jBj+

= AijBjk = µij.

c. The maximum likelihood estimates

µ̂ijk =
nij+n+jk

n+j+

of the expected cell counts are obtained by replacing µij+, µ+jk and µ+j+ in (10) by
estimates nij+, n+jk and n+j+. From the given marginals of the partial table with
Y = j we can read off all nij+, n+jk and n+j+, for instance

µ̂111 =
n11+n+11

n+1+

=
410 · 420

810
= 212.59.

Continuing in this way for the other cells (i, j, k), we get the following predicted
expected cell counts µ̂ijk:

No complications Y = 1:

Type of Clinic
valve Z = 1 Z = 2 Sum

X = 1 212.59 197.41 410

X = 2 207.41 192.59 400

Sum 420 390 810

Complications Y = 2:

Type of Clinic
valve Z = 1 Z = 2 Sum

X = 1 27.37 102.63 130

X = 2 12.63 47.37 60

Sum 40 150 190
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d. The log likelihood ratio statistic for testing (XY, Y Z) against the saturated model
(XY Z), is

G2 = 2
∑
ijk nijk log

nijk

µ̂ijk

= 2
(
210 · log 210

212.59
+ . . .+ 50 · log 50

47.37

)
= 1.18
< χ2

2(0.05) = 5.99,

where in the last step we used that df = 8 − 6 = 2, since the saturated model
(XY Z) has 2× 2× 2 = 8 parameters, whereas the conditional independence model
(XY, Y Z) has 6 parameters according to (9). Thus we cannot reject conditional
independence between X and Z given Y at level 5%.

Problem 4

a. As in Problem 3, we let πijk = µijk/µ+++ = P (X = i, Y = j, Z = k) refer to cell
probabilities, i.e. the joint distribution of all three variables, and πi+k = P (X =
i, Z = k) to the joint distribution of valve type and clinic. From equation (8) we
find that

logit[P (Y = 2|X = i, Z = k)] = log[P (Y = 2|X = i, Z = k)/P (Y = 1|X = i, Z = k)]
= log[(πi2k/πi+k)/(πi1k/πi+k)]
= log(πi2k/πi1k)
= log(µi2k/µi1k)
= (λ+ λXi + λY2 + λZk + λXYi2 + λY Z2k )
− (λ+ λXi + λY1 + λZk + λXYi1 + λY Z1k )
= α + βXi + βZk ,

(11)
where in the last step we used that

α = λY2 − λY1 ,
βXi = λXYi2 − λXYi1 ,
βZk = λY Z2k − λY Z1k .

(12)

If X = 1, Y = 1, and Z = 1 are chosen as baseline levels for the loglinear model,
then any loglinear parameter with i = 1, j = 1 or k = 1 among its indexes is zero.
In view of (12), this implies βX1 = βZ1 = 0. The only remaining parameters are
(α, βX2 , β

Z
2 ) = (λY2 , λ

XY
22 , λY Z22 ).

b. By the definition of the conditional odds ratio and (11), we have that

θXY (k) = [P (Y = 2|X = 2, Z = k)/P (Y = 1|X = 2, Z = k)]
/ [P (Y = 2|X = 1, Z = k)/P (Y = 1|X = 1, Z = k)]

= exp(α + βX2 + βZk )/ exp(α + βX1 + βZk )
= exp(βX2 − βX1 )
= exp(βX2 ),

(13)

since βX1 = 0. Alternatively, we use that

log(θXY (k)) = logitP (Y = 2|X = 2, Z = k)− logitP (Y = 2|X = 1, Z = k)
= (α + βX2 + βZk )− (α + βX1 + βZk )
= βX2 .
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There is homogeneous association, since θXY (k) does not depend on the value k of
the clinic Z. This also follows from the fact that there is no third order association
XY Z between all three variables in the loglinear model.

c. Write π(i, k) = P (Y = 2|X = i, Z = k) for the probability that a patient who has
a valve of type i replaced at clinic k has complications within one year after the
surgery. The average causal effect (ACE) of type of valve is

ACE = N++1

N+++
[π(2, 1)− π(1, 1)] + N++2

N+++
[π(2, 2)− π(1, 2)]

= 460
1000

[
exp(α+βX

2 )

1+exp(α+βX
2 )
− exp(α)

1+exp(α)

]
+ 540

1000

[
exp(α+βX

2 +βZ
2 )

1+exp(α+βX
2 +βZ

2 )
− exp(α+βZ

2 )

1+exp(α+βZ
2 )

]
.

As opposed to θXY (k), it depends not only on βX2 , but also on α and βZ2 .

Problem 5

a. Since the two rows of the contingency table have independent binomial distributions,
it follows that the likelihood of data is

l(α, β) =
(
n0

n01

)
πn01
0 (1− π0)n0−n01 ·

(
n1

n11

)
πn11
1 (1− π1)n1−n11

=
(
n0

n01

) (
π0

1−π0

)n01

(1− π0)n0 ·
(
n1

n11

) (
π1

1−π1

)n11

(1− π1)n1

= c · exp(n01α)(1− π0)n0 · exp(n11(α + β))(1− π1)n1 ,

where c =
(
n0

n01

)
·
(
n1

n11

)
is a constant, not depending on α or β. Taking the logarithm

we obtain a log likelihood

L(α, β) = C + n01α + n0 log(1− π0) + n11(α + β) + n1 log(1− π1)
= C + n01α− n0 log[1 + exp(α)] + n11(α + β)− n1 log[1 + exp(α + β)],

(14)
where C = log(c).

b. By differentiating (14) with respect to α and β, we find that the likelihood score
vector has components

∂L(α, β)/∂α = n01 − n0π0 + n11 − n1π1,
∂L(α, β)/∂β = n11 − n1π1,

(15)

using the fact that d log[1 + exp(x)]/dx = exp(x)/[1 + exp(x)]. Differentiating (15)
with respect to α and β we find that

∂2L(α, β)/∂2α = −n0π0(1− π0)− n1π1(1− π1) =: −a,
∂2L(α, β)/∂α∂β = −n1π1(1− π1) =: −b,
∂2L(α, β)/∂2β = −n1π1(1− π1) =: −b,

(16)

where d[exp(x)/(1 + exp(x))]/dx = exp(x)/[1 + exp(x)]2 was used. In conclusion,
the second derivative matrix of the log likelihood is

d2L(α, β)

d(α, β)2
= −

(
a b
b b

)
, (17)

with a and b as in (16).
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c. Since the Hessian matrix in (17) does not depend on data, the Fisher information
matrix equals

J(α, β) = −E
[
d2L(α, β)

d(α, β)2

]
= −d

2L(α, β)

d(α, β)2
=

(
a b
b b

)
.

Inverting this matrix and using the hint, we find an approximation

Cov(α̂, β̂) ≈ J(α, β)−1 =

(
a b
b b

)−1
=

1

(a− b)b

(
b −b
−b a

)

of the covariance matrix of (α̂, β̂). From the second diagonal element of this matrix
we obtain an approximation

Var(β̂) ≈ a
(a−b)b = n0π0(1−π0)+n1π1(1−π1)

n0π0(1−π0)·n1π1(1−π1)
= 1

n0π0(1−π0) + 1
n1π1(1−π1)

= 1
n0(1−π0) + 1

n0π0
+ 1

n1(1−π1) + 1
n1π1

(18)

of the variance of β̂ (the estimated log odds ratio).

d. The standard error of β̂ is obtained by first replacing πi by estimates π̂i = ni1/ni for
i = 0, 1, in the variance formula (18), and then taking the square root. This gives

SE(β̂) =
√

1
n0(1−π̂0) + 1

n0π̂0
+ 1

n1(1−π̂1) + 1
n1π̂1

=
√

1
n00

+ 1
n01

+ 1
n10

+ 1
n11
.
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