Solutions for Examination Categorical Data Analysis, January 10, 2020

Problem 1

a. Since a fixed number (=9) of games without a draw are played, the row sums $n_{1+}=n_{2+}=9$ are fixed. Therefore the most appropriate sampling scheme is independent binomial rows. We regard $\left(n_{11}, n_{21}\right)$ as data, since they determine uniquely the number of observations in the other two cells. The success probabilities are π_{1} and π_{2} for the first and second rows respectively, so the likelihood is

$$
\begin{aligned}
l\left(\pi_{1}, \pi_{2}\right) & =P\left(N_{11}=n_{11}, N_{21}=n_{21} \mid \pi_{1}, \pi_{2}\right) \\
& =\binom{n_{1+}}{n_{11}} \pi_{1}^{n_{11}}\left(1-\pi_{1}\right)^{n_{1+}-n_{11}} \cdot\binom{n_{2+}}{n_{21}} \pi_{2}^{n_{21}}\left(1-\pi_{2}\right)^{n_{2+}-n_{21}} \\
& =\binom{9}{6} \pi_{1}^{6}\left(1-\pi_{1}\right)^{3} \cdot\binom{9}{3} \pi_{2}^{3}\left(1-\pi_{2}\right)^{6} \\
& =7056 \cdot \pi_{1}^{6}\left(1-\pi_{1}\right)^{3} \pi_{2}^{3}\left(1-\pi_{2}\right)^{6} .
\end{aligned}
$$

The null hypothesis is $H_{0}: \pi_{1}=\pi_{2}=\pi$. This gives a likelihood

$$
l(\pi, \pi)=7056 \cdot \pi^{9}(1-\pi)^{9}
$$

under H_{0}.
b. Fisher's exact test conditions on fixed row and column sums, with a hypergeometric distribution

$$
\begin{equation*}
P_{H_{0}}\left(N_{11}=n_{11} \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right)=\frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}=\frac{\binom{9}{n_{11}}\binom{9}{9-n_{11}}}{\binom{18}{9}} . \tag{1}
\end{equation*}
$$

In the sequel, for ease of notation we will write $P(i)=P\left(N_{11}=i \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right)$.
c. A one-sided alternative

$$
H_{a}: \pi_{1}>\pi_{2}
$$

corresponds to Mary being a more skilled chess player. Using the probabilities in the table, we find a

$$
\begin{aligned}
P-\text { value } & =P_{H_{0}}\left(N_{11} \geq 6 \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right) \\
& =P(6)+P(7)+P(8)+P(9) \\
& =0.1451+0.0267+0.0017+0.0000 \\
& =0.1735
\end{aligned}
$$

and conclude that H_{0} cannot be rejected at level 5%.
d. A two-sided alternative

$$
H_{a}: \pi_{1} \neq \pi_{2}
$$

corresponds to one of the players being more skilled than the other. Because of symmetry in (1) (and from the displayed table) we notice that $P(i)=P(9-i)$. Since this probability is a decreasing function $i=5,6,7,8,9$ we find that the twosided mid P-value is

$$
\begin{aligned}
P-\text { value } & =0.5 \sum_{i ; P(i)=P\left(n_{11}\right)} P(i)+\sum_{i ; P(i)<P\left(n_{11}\right)} P(i) \\
& =0.5[P(3)+P(6)]+P(0)+P(1)+P(2)+P(7)+P(8)+P(9) \\
& =P(6)+2(P(7)+P(8)+P(9)) \\
& =0.1451+2(0.0267+0.0017+0.0000) \\
& =0.2019 .
\end{aligned}
$$

Problem 2

a. Let $n_{i j}$ be the number of observations in cell (i, j), which is an observation of the random variable $N_{i j}$. The joint distribution of all cell counts is multinomial

$$
\boldsymbol{N}=\left(N_{i j}\right)_{i, j=1}^{3} \sim \operatorname{Mult}\left(90,\left(\pi_{i j}\right)_{i, j=1}^{3}\right) .
$$

Since the cell probabilities sum to $1\left(\sum_{i, j=1}^{3} \pi_{i j}=1\right)$, there are 8 free parameters, for instance

$$
\boldsymbol{\theta}=\left(\pi_{11}, \pi_{12}, \pi_{13}, \pi_{21}, \pi_{22}, \pi_{23}, \pi_{31}, \pi_{32}\right)
$$

This gives a likelihood

$$
\begin{aligned}
l(\boldsymbol{\theta}) & =\frac{90!}{\prod_{i, j=1}^{3} n_{i j}!} \Pi_{(i, j) \neq(3,3)} \pi_{i j}^{n_{i j}} \cdot\left(1-\sum_{(i, j) \neq(3,3)} \pi_{i j}\right)^{n_{33}} \\
& =\frac{\sin }{4!8!14!6!12!15!5!5!10!16!} \pi_{11}^{4} \pi_{12}^{8} \pi_{13}^{14} \pi_{21}^{6} \pi_{22}^{12} \pi_{23}^{15} \pi_{31}^{5} \pi_{32}^{10}\left(1-\sum_{(i, j) \neq(2,2)} \pi_{i j}\right)^{16} .
\end{aligned}
$$

b. The expected cell counts under H_{0} are

$$
\mu_{i j}=E\left(N_{i j}\right)=n_{++} \pi_{i+} \pi_{+j}=90 \cdot \frac{1}{3} \cdot \frac{1}{3}=10 .
$$

This gives a X^{2}-statistic

$$
X^{2}=\sum_{i, j=1}^{3} \frac{\left(n_{i j}-\mu_{i j}\right)^{2}}{\mu_{i j}}=\frac{1}{10} \sum_{i, j=1}^{3}\left(n_{i j}-10\right)^{2}=\frac{1}{10}\left[(4-10)^{2}+\ldots(16-10)^{2}\right]=16.2 .
$$

Since the saturated model has 8 parameters and H_{0} no freely variable parameter, the number of degrees of freedom is $8-0=8$. Therefore, since $X^{2}>\chi_{8}^{2}(0.05)=15.5$, we confirm Ben's suspicion that the claimed properties of the lottery are wrong, by rejecting H_{0} at level 5%.
c. The estimated expected cell counts under H_{0}^{\prime} equal

$$
\hat{\mu}_{i j}=n_{++} \pi_{i+} \hat{\pi}_{+j}=n_{++} \cdot \frac{1}{3} \cdot \frac{n_{+j}}{n_{++}}=\frac{n_{+j}}{3}= \begin{cases}5, & j=1, \\ 10, & j=2 \\ 15, & j=3\end{cases}
$$

This gives a X^{2}-statistic

$$
X^{2}=\sum_{i, j=1}^{3} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}}=\frac{(4-5)^{2}}{5}+\ldots \frac{(16-15)^{2}}{15}=1.33 .
$$

Since H_{0}^{\prime} has 2 freely variable parameters (π_{+1} and π_{+2} for instance, since $\pi_{+3}=$ $1-\pi_{+1}-\pi_{+2}$), the test has $8-2=6$ degrees of freedom. Since $X^{2}<\chi_{6}^{2}(0.05)=12.59$, we don't reject Ben's suggested model H_{0}^{\prime} for the lottery.

Problem 3

a. Model $M_{1}=(\mathrm{EG}, \mathrm{ES})$ has Poisson distributed cell counts

$$
N_{e g s} \sim \operatorname{Po}\left(\exp \left(\lambda+\lambda_{e}^{E}+\lambda_{g}^{G}+\lambda_{s}^{S}+\lambda_{e g}^{E G}+\lambda_{e s}^{E S}\right)\right)
$$

with $e \in\{1,2,3\}$ and $g, s \in\{1,2\}$. If the highest level of each variable is used as baseline, any parameter with at least one of its indices e, g or s equal to the highest level is put to zero. This gives 9 parameters, included in the vector

$$
\begin{equation*}
\left(\lambda, \lambda_{1}^{E}, \lambda_{2}^{E}, \lambda_{1}^{S}, \lambda_{1}^{G}, \lambda_{11}^{E G}, \lambda_{21}^{E G}, \lambda_{11}^{E S}, \lambda_{21}^{E S}\right) \tag{2}
\end{equation*}
$$

Model $M_{0}=(\mathrm{EG}, \mathrm{S})$ is obtained from (2) by removing the two interaction parameters between E and S. The remaining 7 parameters are included in the vector

$$
\begin{equation*}
\left(\lambda, \lambda_{1}^{E}, \lambda_{2}^{E}, \lambda_{1}^{S}, \lambda_{1}^{G}, \lambda_{11}^{E G}, \lambda_{21}^{E G}\right) \tag{3}
\end{equation*}
$$

b. Write the expected cell counts as $\mu_{\text {egs }}=\mu_{+++} \pi_{\text {egs. }}$. Since E, G and S are jointly independent under M_{0}, we have that $\pi_{\text {egs }}=\pi_{\text {eg+ }} \pi_{++s}$. The fitted values of $\mu_{\text {egs }}$ for model $M_{0}=(E G, S)$ are therefore

$$
\begin{equation*}
\hat{\mu}_{e g s}^{(0)}=\hat{\mu}_{+++} \hat{\pi}_{e g+} \hat{\pi}_{++s}=n \cdot \frac{n_{e g+}}{n} \cdot \frac{n_{++s}}{n}=\frac{n_{e g+} n_{++s}}{n}, \tag{4}
\end{equation*}
$$

where n_{++s} are total number of students in each school $\left(n_{++1}=128, n_{++2}=93\right)$ and $n=n_{++1}+n_{++2}=221$ the total number of students in both schools. By adding the tables for the two schools we obtain all $n_{\text {eg+ }}\left(n_{11+}=25, n_{12+}=9, n_{21+}=57\right.$, $n_{22+}=59, n_{31+}=27$ and $n_{32+}=44$). Insertion into (4) gives the values of $\hat{\mu}_{\text {egs }}^{(0)}$ in the upper table of Appendix A, for instance

$$
\hat{\mu}_{111}^{(0)}=\frac{n_{11+} n_{++1}}{n}=\frac{25 \cdot 128}{221}=14.48 .
$$

For model $M_{1}=(\mathrm{EG}, \mathrm{ES})$ we have that $\pi_{e g s}=\pi_{e++} \pi_{g \mid e} \pi_{s \mid e}$. Since $\pi_{g \mid e}=\pi_{e g+} / \pi_{e++}$ and $\pi_{s \mid e}=\pi_{e+s} / \pi_{e++}$, we find that $\pi_{e g s}=\pi_{e g+} \pi_{e+s} / \pi_{e++}$. Consequently,

$$
\begin{equation*}
\hat{\mu}_{e g s}^{(1)}=n \cdot \frac{\hat{\pi}_{e g+} \hat{\pi}_{e+s}}{\hat{\pi}_{e++}}=n \cdot \frac{\left(n_{e g+} / n\right) \cdot\left(n_{e+s} / n\right)}{n_{e++} / n}=\frac{n_{e g+} n_{e+s}}{n_{e++}}, \tag{5}
\end{equation*}
$$

with $n_{\text {eg+ }}$ as in (4), whereas the values of $n_{e+s}\left(n_{1+1}=21, n_{2+1}=68, n_{3+1}=39\right.$, $n_{1+2}=13, n_{2+2}=48, n_{3+2}=32$) are obtained from the row sums of the two schools. By adding the two row sums from the two schools, for each economy level e, we end up with all $n_{e++}\left(n_{1++}=34, n_{2++}=116, n_{3++}=71\right)$. Insertion of these numbers into (5) gives the values of the lower table of Appendix A, for instance

$$
\hat{\mu}_{111}^{(1)}=\frac{n_{11+} n_{1+1}}{n_{1++}}=\frac{25 \cdot 21}{34}=15.44 .
$$

c. In order to test

$$
\begin{array}{ll}
H_{0}: & M_{0} \text { holds, } \\
H_{a}: & M_{1} \text { holds but not } M_{0},
\end{array}
$$

we use the likelihood ratio statistic

$$
\begin{aligned}
G^{2}\left(M_{0} \mid M_{1}\right) & =G^{2}\left(M_{0}\right)-G^{2}\left(M_{1}\right) \\
& =2 \sum_{e, g, s} n_{\text {egs }} \log \left(n_{\text {egs }} / \hat{\mu}_{\text {egs }}^{(0)}\right) \\
& -2 \sum_{e, g, s} n_{\text {egs }} \log \left(n_{\text {egs }}\left(\hat{\mu}_{e g s}^{(1)}\right)\right. \\
& =2 \sum_{e, g, s} n_{\text {ess }} \log \left(\hat{\mu}_{\text {egs }}^{(1)} \hat{\mu}_{\text {egs }}^{(0)}\right) \\
& =2(15 \cdot \log (15.44 / 14.48)+\ldots+19 \cdot \log (19.83 / 18.52)) \\
& =0.4906 \\
& <\chi_{9-7}^{2}(0.05)=5.99 .
\end{aligned}
$$

Since H_{0} is not rejected, there is no significant difference between the economy levels of the two schools at level 0.05.

Problem 4

a. The parameters of M_{0} are listed in (3), and therefore the logistic regression model satisfies

$$
\begin{align*}
& \operatorname{logit}(P(G=2 \mid E=e, S=s)) \\
& \quad=\log (P(G=2 \mid E=e, S=s))-\log (P(G=1 \mid E=e, S=s)) \\
& \quad=\log (P(E=e, G=2, S=s))-\log (P(E=e, G=1, S=s)) \\
& \quad=\log \pi_{e 2 s}-\log \pi_{e 1 s} \\
& \quad=\log \mu_{e 2 s}-\log \mu_{e 1 s} \tag{6}\\
& =\left(\lambda+\lambda_{e}^{E}+\lambda_{2}^{G}+\lambda_{s}^{S}+\lambda_{e 2}^{E G}\right)-\left(\lambda+\lambda_{e}^{E}+\lambda_{1}^{G}+\lambda_{s}^{S}+\lambda_{e 1}^{E G}\right) \\
& =\left(\lambda_{2}^{G}-\lambda_{1}^{G}\right)+\left(\lambda_{e 2}^{E G}-\lambda_{e 1}^{E G}\right) \\
& =\beta_{0}+\beta_{e},
\end{align*}
$$

where $\beta_{0}=\lambda_{2}^{G}-\lambda_{1}^{G}=-\lambda_{1}^{G}$ and $\beta_{e}=\beta_{e}^{E}=\lambda_{e 2}^{E G}-\lambda_{e 1}^{E G}=-\lambda_{e 1}^{E G}$ for $e=1,2,3$. Since $\lambda_{31}^{E G}=0$ it follows that $\beta_{3}=0$, so there are only three parameters $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$.

Model (6) is an ANOVA type logistic regression model for an outcome variable G and two categorical predictor variables E and S, of which the second has no effect.
b. It follows from (6) that

$$
\theta_{1}=e^{\beta_{1}}=\frac{e^{\beta_{0}+\beta_{1}}}{e^{\beta_{0}}}=\frac{P(G=2 \mid E=1, S=s) / P(G=1 \mid E=1, S=s)}{P(G=2 \mid E=3, S=s) / P(G=1 \mid E=3, S=s)}
$$

is a conditional odds ratio, i.e. the odds of a student from a low income family to have high grades relative to the corresponding odds of a student from a high income family (regardless of school, i.e. homogeneous association). The corresponding estimated conditional odds ratio is $\hat{\theta}_{1}=e^{-1.51}=0.221$. Similarly, one finds that $\hat{\theta}_{2}=e^{-0.4539}=$ 0.635 is the estimated odds for a student from a middle income family to have high grades relative to one from a high income family (regardless of school, i.e. homogeneous association), whereas $\hat{\theta}_{3}=e^{-1.51-(-0.4539)}=0.348$ is the estimated odds for a student from a low income family to have high grades relative to one from a middle income family (regardless of school, i.e. homogeneous association). As a remark we notice that all these three estimated conditional odds ratios agree with the corresponding estimated marginal odds ratios, for instance

$$
\hat{\theta}_{1}=\frac{n_{12+} n_{31+}}{n_{11+} n_{32+}}=\frac{9 \cdot 27}{25 \cdot 44}=0.221
$$

c. Since the probability $P(G=g \mid E=e, S=s)=P(G=g \mid E=e)$ of grade g does not depend on school s, the likelihood of the logistic regression model is

$$
\begin{aligned}
l(\boldsymbol{\beta}) & =\prod_{e, s}\left[P(G=2 \mid E=e)^{n_{e 2 s}} P(G=1 \mid E=e)^{n_{e 1 s}}\right] \\
& =\prod_{e=1}^{3}\left[P(G=2 \mid E=e)^{n_{e 2+}+} P(G=1 \mid E=e)^{n_{e 1+}}\right] \\
& =\prod_{e=1}^{3}\left[\left(e^{\beta_{0}+\beta_{e}} /\left(1+e^{\beta_{0}+\beta_{e}}\right)\right)^{n_{e 2+}} \cdot\left(1 /\left(1+e^{\beta_{0}+\beta_{e}}\right)\right)^{n_{e 1+}}\right] \\
& =\prod_{e=1}^{3}\left[e^{n_{e 2+}+\left(\beta_{0}+\beta_{e}\right)} /\left(1+e^{\beta_{0}+\beta_{e}}\right)^{n_{e++}}\right]
\end{aligned}
$$

where $\beta_{3}=0$ according to a). This gives a log likelihood function

$$
\begin{aligned}
L(\boldsymbol{\beta}) & =\log l(\boldsymbol{\beta}) \\
& =\sum_{e=1}^{3}\left[n_{e 2+}\left(\beta_{0}+\beta_{e}\right)-n_{e++} \log \left(1+e^{\beta_{0}+\beta_{e}}\right)\right] \\
& =n_{12+}\left(\beta_{0}+\beta_{1}\right)-n_{1++} \log \left(1+e^{\beta_{0}+\beta_{1}}\right) \\
& +n_{22+}\left(\beta_{0}+\beta_{2}\right)-n_{2++} \log \left(1+e^{\beta_{0}+\beta_{2}}\right) \\
& +n_{32+} \beta_{0}-n_{3++} \log \left(1+e^{\beta_{0}}\right) .
\end{aligned}
$$

Write the score vector as $\boldsymbol{u}(\boldsymbol{\beta})=\left(u_{0}(\boldsymbol{\beta}), u_{1}(\boldsymbol{\beta}), u_{2}(\boldsymbol{\beta})\right)$, where $u_{j}(\boldsymbol{\beta})=\partial L(\boldsymbol{\beta}) / \partial \beta_{j}$. The first component equals

$$
\begin{aligned}
u_{0}(\boldsymbol{\beta}) & =n_{12+}-n_{1++} e^{\beta_{0}+\beta_{1}} /\left(1+e^{\beta_{0}+\beta_{1}}\right) \\
& +n_{22+}-n_{2++} e^{\beta_{0}+\beta_{2}} /\left(1+e^{\beta_{0}+\beta_{2}}\right) \\
& +n_{32+}-n_{3++} e^{\beta_{0}} /\left(1+e^{\beta_{0}}\right)
\end{aligned}
$$

whereas the other two components are

$$
\begin{aligned}
& u_{1}(\boldsymbol{\beta})=n_{12+}-n_{1++} e^{\beta_{0}+\beta_{1}} /\left(1+e^{\beta_{0}+\beta_{1}}\right) \\
& u_{2}(\boldsymbol{\beta})=n_{22+}-n_{2++} e^{\beta_{0}+\beta_{2}} /\left(1+e^{\beta_{0}+\beta_{2}}\right)
\end{aligned}
$$

We find that

$$
\begin{aligned}
u_{1}(\hat{\boldsymbol{\beta}}) & =n_{12+}-n_{1++} e^{\hat{\beta}_{0}+\hat{\beta}_{1}} /\left(1+e^{\hat{\beta}_{0}+\hat{\beta}_{1}}\right) \\
& =9-34 \cdot e^{0.4884-1.5100} /\left(1+e^{0.4884-1.5100}\right) \\
& =0
\end{aligned}
$$

and similarly $u_{0}(\hat{\boldsymbol{\beta}})=u_{2}(\hat{\boldsymbol{\beta}})=0$.

Problem 5

a. The ratio of the oddses of the second wheel having a high outcome $(Y=2)$, when the first wheel has a high $(X=2)$ and low $(X=1)$ outcome respectively, is

$$
\begin{align*}
\theta & =\frac{P(Y=2 \mid X=2) / P(Y=1 \mid X=2)}{P(Y=2 \mid X=1) / P(P=1 \mid X=1)} \\
& =\frac{\left(p_{22} / p_{2+}+\right) /\left(p_{21} / p_{2+}\right)}{\left(p_{12} p_{1+2}+/\left(p_{11} / p_{1+}\right)\right.} \tag{7}\\
& =\left(p_{11} p_{22}\right) /\left(p_{12} p_{21}\right) .
\end{align*}
$$

b. Let $\hat{p}_{i j}=n_{i j} / n$, and define

$$
\begin{align*}
\hat{\theta} & =\left(\hat{p}_{11} \hat{p}_{22}\right) /\left(\hat{p}_{12} \hat{p}_{21}\right) \\
& =\left(n_{11} n_{22}\right) /\left(n_{12} n_{21}\right) \\
& =(4 \cdot 12) /(8 \cdot 6) \tag{8}\\
& =1
\end{align*}
$$

be our estimator of θ, obtained by replacing all $p_{i j}$ with $\hat{p}_{i j}$ in (7). Then, by a first order Taylor expansion

$$
\begin{align*}
\log (\hat{\theta})-\log (\theta) & =\left(\log \left(\hat{p}_{11}\right)-\log \left(p_{11}\right)\right)+\left(\log \left(\hat{p}_{22}\right)-\log \left(p_{22}\right)\right) \\
& -\left(\log \left(\hat{p}_{12}\right)-\log \left(p_{12}\right)\right)-\left(\log \left(\hat{p}_{21}\right)-\log \left(p_{21}\right)\right) \tag{9}\\
& \approx \hat{p}_{11} / p_{11}+\hat{p}_{22} / p_{22}-\hat{p}_{12} / p_{12}-\hat{p}_{21} / p_{21} \\
& =\sum_{i, j}(-1)^{i+j} \hat{p}_{i j} / p_{i j} .
\end{align*}
$$

The cell counts $n_{i j}$ are observations of

$$
\left(N_{11}, N_{12}, N_{21}, N_{22}\right) \sim \operatorname{Mult}\left(n ; p_{11}, p_{12}, p_{21}, p_{22}\right)
$$

From this it follows that

$$
\operatorname{Cov}\left(\hat{p}_{i j}, \hat{p}_{k l}\right)=\frac{\operatorname{Cov}\left(N_{i j}, N_{k l}\right)}{n^{2}}= \begin{cases}p_{i j}\left(1-p_{i j}\right) / n, & (i, j)=(k, l), \tag{10}\\ -p_{i j} p_{k l} / n, & (i, j) \neq(k, l) .\end{cases}
$$

Combining (9) and (10), we find that

$$
\begin{align*}
\operatorname{Var}(\log (\hat{\theta})) & \approx \operatorname{Var}\left(\sum_{i, j}(-1)^{i+j} \hat{p}_{i j} / p_{i j}\right) \\
& =\sum_{i, j, j, l}(-1)^{i+j+k+l} \operatorname{Cov}\left(\hat{p}_{i j}, \hat{p}_{k l}\right) /\left(p_{i j} p_{k l}\right) \\
& =\sum_{i, j}(-1)^{2(i+j)} p_{i j} /\left(n p_{i j}^{2}\right) \\
& -\sum_{i, j, k, l}(-1)^{i+j+k+l} p_{i j} p_{k l} /\left(n p_{i j} p_{k l}\right) \tag{11}\\
& =\sum_{i, j} /\left(n p_{i j}\right)-\left(\sum_{i, j}(-1)^{i+j}\right)^{2} / n \\
& =1 /\left(n p_{11}\right)+1 /\left(n p_{12}\right)+1 /\left(n p_{21}\right)+1 /\left(n p_{22}\right) .
\end{align*}
$$

c. We start by estimating the variance of $\log (\hat{\theta})$, replacing $p_{i j}$ by estimates $\hat{p}_{i j}=n_{i j} / n$ in (11). This gives

$$
\begin{aligned}
\widehat{\operatorname{Var}}(\log (\hat{\theta})) & =1 / n_{11}+1 / n_{12}+1 / n_{21}+1 / n_{22} \\
& =1 / 4+1 / 8+1 / 6+1 / 12 \\
& =0.6250
\end{aligned}
$$

Together with the point estimate of θ in (8), we obtain an approximate 95% Wald type confidence interval

$$
(\log (\hat{\theta})-1.96 \sqrt{0.6250}, \log (\hat{\theta})+1.96 \sqrt{0.6250})=(-1.5495,1.5495)=:(a, b)
$$

for $\log (\theta)$, with $1.96=\sqrt{\chi_{0.05}^{2}(1)}=\sqrt{3.84}$ the 0.975 -quantile of a standard normal distribution. Since the logarithmic function is monotone increasing, we take the inverse of this function in order to find a confidence interval

$$
(\exp (a), \exp (b))=(\exp (-1.5495), \exp (1.5945))=(0.212,4.709)
$$

for θ, with approximate coverage probability 95%. Since 1 is included in this interval we cannot reject independence between X and Y at level 5%.

