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Problem 1

a. Since a fixed number (=9) of games without a draw are played, the row sums
n1+ = n2+ = 9 are fixed. Therefore the most appropriate sampling scheme is
independent binomial rows. We regard (n11, n21) as data, since they determine
uniquely the number of observations in the other two cells. The success probabilities
are π1 and π2 for the first and second rows respectively, so the likelihood is

l(π1, π2) = P (N11 = n11, N21 = n21|π1, π2)
=

(
n1+

n11

)
πn11
1 (1− π1)n1+−n11 ·

(
n2+

n21

)
πn21
2 (1− π2)n2+−n21

=
(
9
6

)
π6
1(1− π1)3 ·

(
9
3

)
π3
2(1− π2)6

= 7056 · π6
1(1− π1)3π3

2(1− π2)6.
The null hypothesis is H0 : π1 = π2 = π. This gives a likelihood

l(π, π) = 7056 · π9(1− π)9

under H0.

b. Fisher’s exact test conditions on fixed row and column sums, with a hypergeometric
distribution

PH0(N11 = n11|n1+, n2+, n+1, n+2) =

(
n1+

n11

)(
n2+

n+1−n11

)
(
n
n+1

) =

(
9
n11

)(
9

9−n11

)
(
18
9

) . (1)

In the sequel, for ease of notation we will write P (i) = P (N11 = i|n1+, n2+, n+1, n+2).

c. A one-sided alternative
Ha : π1 > π2

corresponds to Mary being a more skilled chess player. Using the probabilities in
the table, we find a

P − value = PH0(N11 ≥ 6|n1+, n2+, n+1, n+2)
= P (6) + P (7) + P (8) + P (9)
= 0.1451 + 0.0267 + 0.0017 + 0.0000
= 0.1735,

and conclude that H0 cannot be rejected at level 5%.

1



d. A two-sided alternative
Ha : π1 6= π2

corresponds to one of the players being more skilled than the other. Because of
symmetry in (1) (and from the displayed table) we notice that P (i) = P (9 − i).
Since this probability is a decreasing function i = 5, 6, 7, 8, 9 we find that the two-
sided mid P -value is

P − value = 0.5
∑
i;P (i)=P (n11) P (i) +

∑
i;P (i)<P (n11) P (i)

= 0.5[P (3) + P (6)] + P (0) + P (1) + P (2) + P (7) + P (8) + P (9)
= P (6) + 2(P (7) + P (8) + P (9))
= 0.1451 + 2(0.0267 + 0.0017 + 0.0000)
= 0.2019.

Problem 2

a. Let nij be the number of observations in cell (i, j), which is an observation of the
random variable Nij. The joint distribution of all cell counts is multinomial

N = (Nij)
3
i,j=1 ∼ Mult(90, (πij)

3
i,j=1).

Since the cell probabilities sum to 1 (
∑3
i,j=1 πij = 1), there are 8 free parameters,

for instance
θ = (π11, π12, π13, π21, π22, π23, π31, π32).

This gives a likelihood

l(θ) = 90!∏3

i,j=1
nij !

∏
(i,j)6=(3,3) π

nij

ij · (1−
∑

(i,j)6=(3,3) πij)
n33

= 500!
4!8!14!6!12!15!5!10!16!

π4
11π

8
12π

14
13π

6
21π

12
22π

15
23π

5
31π

10
32(1−∑(i,j)6=(2,2) πij)

16.

b. The expected cell counts under H0 are

µij = E(Nij) = n++πi+π+j = 90 · 1

3
· 1

3
= 10.

This gives a X2-statistic

X2 =
3∑

i,j=1

(nij − µij)2

µij
=

1

10

3∑
i,j=1

(nij−10)2 =
1

10

[
(4− 10)2 + . . . (16− 10)2

]
= 16.2.

Since the saturated model has 8 parameters and H0 no freely variable parameter, the
number of degrees of freedom is 8− 0 = 8. Therefore, since X2 > χ2

8(0.05) = 15.5,
we confirm Ben’s suspicion that the claimed properties of the lottery are wrong, by
rejecting H0 at level 5%.

c. The estimated expected cell counts under H ′0 equal

µ̂ij = n++πi+π̂+j = n++ ·
1

3
· n+j

n++

=
n+j

3
=


5, j = 1,
10, j = 2,
15, j = 3.
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This gives a X2-statistic

X2 =
3∑

i,j=1

(nij − µ̂ij)2

µ̂ij
=

(4− 5)2

5
+ . . .

(16− 15)2

15
= 1.33.

Since H ′0 has 2 freely variable parameters (π+1 and π+2 for instance, since π+3 =
1−π+1−π+2), the test has 8-2=6 degrees of freedom. Since X2 < χ2

6(0.05) = 12.59,
we don’t reject Ben’s suggested model H ′0 for the lottery.

Problem 3

a. Model M1 = (EG,ES) has Poisson distributed cell counts

Negs ∼ Po
(
exp(λ+ λEe + λGg + λSs + λEGeg + λESes )

)
,

with e ∈ {1, 2, 3} and g, s ∈ {1, 2}. If the highest level of each variable is used as
baseline, any parameter with at least one of its indices e, g or s equal to the highest
level is put to zero. This gives 9 parameters, included in the vector

(λ, λE1 , λ
E
2 , λ

S
1 , λ

G
1 , λ

EG
11 , λ

EG
21 , λ

ES
11 , λ

ES
21 ). (2)

Model M0 = (EG,S) is obtained from (2) by removing the two interaction parame-
ters between E and S. The remaining 7 parameters are included in the vector

(λ, λE1 , λ
E
2 , λ

S
1 , λ

G
1 , λ

EG
11 , λ

EG
21 ). (3)

b. Write the expected cell counts as µegs = µ+++πegs. Since E,G and S are jointly
independent under M0, we have that πegs = πeg+π++s. The fitted values of µegs for
model M0 = (EG,S) are therefore

µ̂(0)
egs = µ̂+++π̂eg+π̂++s = n · neg+

n
· n++s

n
=
neg+n++s

n
, (4)

where n++s are total number of students in each school (n++1 = 128, n++2 = 93)
and n = n++1+n++2 = 221 the total number of students in both schools. By adding
the tables for the two schools we obtain all neg+ (n11+ = 25, n12+ = 9, n21+ = 57,
n22+ = 59, n31+ = 27 and n32+ = 44). Insertion into (4) gives the values of µ̂(0)

egs in
the upper table of Appendix A, for instance

µ̂
(0)
111 =

n11+n++1

n
=

25 · 128

221
= 14.48.

For model M1 = (EG,ES) we have that πegs = πe++πg|eπs|e. Since πg|e = πeg+/πe++

and πs|e = πe+s/πe++, we find that πegs = πeg+πe+s/πe++. Consequently,

µ̂(1)
egs = n · π̂eg+π̂e+s

π̂e++

= n · (neg+/n) · (ne+s/n)

ne++/n
=
neg+ne+s
ne++

, (5)
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with neg+ as in (4), whereas the values of ne+s (n1+1 = 21, n2+1 = 68, n3+1 = 39,
n1+2 = 13, n2+2 = 48, n3+2 = 32) are obtained from the row sums of the two schools.
By adding the two row sums from the two schools, for each economy level e, we end
up with all ne++ (n1++ = 34, n2++ = 116, n3++ = 71). Insertion of these numbers
into (5) gives the values of the lower table of Appendix A, for instance

µ̂
(1)
111 =

n11+n1+1

n1++

=
25 · 21

34
= 15.44.

c. In order to test
H0 : M0 holds,
Ha : M1 holds but not M0,

we use the likelihood ratio statistic

G2(M0|M1) = G2(M0)−G2(M1)
= 2

∑
e,g,s negs log(negs/µ̂

(0)
egs)

− 2
∑
e,g,s negs log(negs/µ̂

(1)
egs)

= 2
∑
e,g,s negs log(µ̂(1)

egs/µ̂
(0)
egs)

= 2 (15 · log(15.44/14.48) + . . .+ 19 · log(19.83/18.52))
= 0.4906
< χ2

9−7(0.05) = 5.99.

Since H0 is not rejected, there is no significant difference between the economy levels
of the two schools at level 0.05.

Problem 4

a. The parameters of M0 are listed in (3), and therefore the logistic regression model
satisfies

logit (P (G = 2|E = e, S = s))
= log (P (G = 2|E = e, S = s))− log (P (G = 1|E = e, S = s))
= log (P (E = e,G = 2, S = s))− log (P (E = e,G = 1, S = s))
= log πe2s − log πe1s
= log µe2s − log µe1s
=
(
λ+ λEe + λG2 + λSs + λEGe2

)
−
(
λ+ λEe + λG1 + λSs + λEGe1

)
= (λG2 − λG1 ) + (λEGe2 − λEGe1 )
= β0 + βe,

(6)

where β0 = λG2 −λG1 = −λG1 and βe = βEe = λEGe2 −λEGe1 = −λEGe1 for e = 1, 2, 3. Since
λEG31 = 0 it follows that β3 = 0, so there are only three parameters β = (β0, β1, β2).

Model (6) is an ANOVA type logistic regression model for an outcome variable G
and two categorical predictor variables E and S, of which the second has no effect.

b. It follows from (6) that

θ1 = eβ1 =
eβ0+β1

eβ0
=
P (G = 2|E = 1, S = s)/P (G = 1|E = 1, S = s)

P (G = 2|E = 3, S = s)/P (G = 1|E = 3, S = s)
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is a conditional odds ratio, i.e. the odds of a student from a low income family to have
high grades relative to the corresponding odds of a student from a high income family
(regardless of school, i.e. homogeneous association). The corresponding estimated
conditional odds ratio is θ̂1 = e−1.51 = 0.221. Similarly, one finds that θ̂2 = e−0.4539 =
0.635 is the estimated odds for a student from a middle income family to have
high grades relative to one from a high income family (regardless of school, i.e.
homogeneous association), whereas θ̂3 = e−1.51−(−0.4539) = 0.348 is the estimated
odds for a student from a low income family to have high grades relative to one
from a middle income family (regardless of school, i.e. homogeneous association).
As a remark we notice that all these three estimated conditional odds ratios agree
with the corresponding estimated marginal odds ratios, for instance

θ̂1 =
n12+n31+

n11+n32+

=
9 · 27

25 · 44
= 0.221.

c. Since the probability P (G = g|E = e, S = s) = P (G = g|E = e) of grade g does
not depend on school s, the likelihood of the logistic regression model is

l(β) =
∏
e,s[P (G = 2|E = e)ne2sP (G = 1|E = e)ne1s ]

=
∏3
e=1[P (G = 2|E = e)ne2+P (G = 1|E = e)ne1+ ]

=
∏3
e=1[(e

β0+βe/(1 + eβ0+βe))ne2+ · (1/(1 + eβ0+βe))ne1+ ]
=

∏3
e=1[e

ne2+(β0+βe)/(1 + eβ0+βe)ne++ ],

where β3 = 0 according to a). This gives a log likelihood function

L(β) = log l(β)
=

∑3
e=1[ne2+(β0 + βe)− ne++ log(1 + eβ0+βe)]

= n12+(β0 + β1)− n1++ log(1 + eβ0+β1)
+ n22+(β0 + β2)− n2++ log(1 + eβ0+β2)
+ n32+β0 − n3++ log(1 + eβ0).

Write the score vector as u(β) = (u0(β), u1(β), u2(β)), where uj(β) = ∂L(β)/∂βj.
The first component equals

u0(β) = n12+ − n1++e
β0+β1/(1 + eβ0+β1)

+ n22+ − n2++e
β0+β2/(1 + eβ0+β2)

+ n32+ − n3++e
β0/(1 + eβ0),

whereas the other two components are

u1(β) = n12+ − n1++e
β0+β1/(1 + eβ0+β1),

u2(β) = n22+ − n2++e
β0+β2/(1 + eβ0+β2).

We find that

u1(β̂) = n12+ − n1++e
β̂0+β̂1/(1 + eβ̂0+β̂1)

= 9− 34 · e0.4884−1.5100/(1 + e0.4884−1.5100)
= 0,

and similarly u0(β̂) = u2(β̂) = 0.
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Problem 5

a. The ratio of the oddses of the second wheel having a high outcome (Y = 2), when
the first wheel has a high (X = 2) and low (X = 1) outcome respectively, is

θ = P (Y=2|X=2)/P (Y=1|X=2)
P (Y=2|X=1)/P (Y=1|X=1)

= (p22/p2+)/(p21/p2+)
(p12/p1+)/(p11/p1+)

= (p11p22)/(p12p21).

(7)

b. Let p̂ij = nij/n, and define

θ̂ = (p̂11p̂22)/(p̂12p̂21)
= (n11n22)/(n12n21)
= (4 · 12)/(8 · 6)
= 1

(8)

be our estimator of θ, obtained by replacing all pij with p̂ij in (7). Then, by a first
order Taylor expansion

log(θ̂)− log(θ) = (log(p̂11)− log(p11)) + (log(p̂22)− log(p22))
− (log(p̂12)− log(p12))− (log(p̂21)− log(p21))
≈ p̂11/p11 + p̂22/p22 − p̂12/p12 − p̂21/p21
=

∑
i,j(−1)i+j p̂ij/pij.

(9)

The cell counts nij are observations of

(N11, N12, N21, N22) ∼ Mult(n; p11, p12, p21, p22).

From this it follows that

Cov(p̂ij, p̂kl) =
Cov(Nij, Nkl)

n2
=

{
pij(1− pij)/n, (i, j) = (k, l),
−pijpkl/n, (i, j) 6= (k, l).

(10)

Combining (9) and (10), we find that

Var(log(θ̂)) ≈ Var(
∑
i,j(−1)i+j p̂ij/pij)

=
∑
i,j,k,l(−1)i+j+k+lCov(p̂ij, p̂kl)/(pijpkl)

=
∑
i,j(−1)2(i+j)pij/(np

2
ij)

− ∑
i,j,k,l(−1)i+j+k+lpijpkl/(npijpkl)

=
∑
i,j /(npij)−

(∑
i,j(−1)i+j

)2
/n

= 1/(np11) + 1/(np12) + 1/(np21) + 1/(np22).

(11)

c. We start by estimating the variance of log(θ̂), replacing pij by estimates p̂ij = nij/n
in (11). This gives

V̂ar(log(θ̂)) = 1/n11 + 1/n12 + 1/n21 + 1/n22

= 1/4 + 1/8 + 1/6 + 1/12
= 0.6250.
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Together with the point estimate of θ in (8), we obtain an approximate 95% Wald
type confidence interval

(log(θ̂)− 1.96
√

0.6250, log(θ̂) + 1.96
√

0.6250) = (−1.5495, 1.5495) =: (a, b)

for log(θ), with 1.96 =
√
χ2
0.05(1) =

√
3.84 the 0.975-quantile of a standard normal

distribution. Since the logarithmic function is monotone increasing, we take the
inverse of this function in order to find a confidence interval

(exp(a), exp(b)) = (exp(−1.5495), exp(1.5945)) = (0.212, 4.709)

for θ, with approximate coverage probability 95%. Since 1 is included in this interval
we cannot reject independence between X and Y at level 5%.
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