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Problem 1

a. The linear logistic regression model has

π(x) =
exp(α + βx)

1 + exp(α + βx)
. (1)

b. We need to find a confidence interval for π(8). We first look at logit [π(8)] = α+8β,
whose point estimate is

logit [π̂(8)] = α̂ + 8β̂ = −6.0 + 8 · 0.5 = −2.0. (2)

Since
Var [logit(π̂(8))] = Var(α̂) + 2 · 8 · Cov(α̂, β̂) + 82 · Var(β̂)

= Var(α̂) + 16 · Cov(α̂, β̂) + 64 · Var(β̂),

this gives a standard error for the estimate in (2) that equals

SE =
√

V̂ar(α̂) + 16 · Ĉov(α̂, β̂) + 64 · V̂ar(β̂)

=
√

0.1 + 16 · (−0.01) + 64 · 0.005

=
√

0.260
= 0.510

and a Wald type confidence interval

(−2.0− 1.96 · SE,−2.0 + 1.96 · SE) = (−3.000,−1.001)

for logit[π(8)] with approximate coverage probability 95%, since z0.025 =
√
χ2
1(0.05) =

1.96 is the 97.5% quantile of a standard normal distribution. The corresponding
confidence interval for π(8), with approximate coverage probability 95%, is(

exp(−3.000)

1 + exp(−3.000)
,

exp(−1.001)

1 + exp(−1.001)

)
= (0.048, 0.269).
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c. Suppose Scott’s PSA level is x, so that James’ PSA level is x + 3. The requested
odds ratio is

OR =
π(x+ 3)/(1− π(x+ 3))

π(x)/(1− π(x))
=

exp(α + β(x+ 3))

exp(α + βx)
= exp(3β).

By a similar argument as in a), we first compute a confidence interval(
β̂ − 1.96

√
V̂ar(β̂), β̂ + 1.96

√
V̂ar(β̂)

)
= (0.5− 1.96 ·

√
0.005, 0.5 + 1.96 ·

√
0.005)

= (0.3614, 0.6386)

for β with approximate coverage probability 95%. The corresponding confidence
interval for the odds ratio is

(exp(3 · 0.3614), exp(3 · 0.6386)) = (2.96, 6.79).

Problem 2

a. Let X, Y ∈ {1, 2} refer to type of surgery and outcome of surgery respectively, for
a randomly chosen individual, and πij = P (X = i, Y = j) the probability that an
observation belongs to cell (i, j). Since these probabilities are proportional to the
expected cell counts µij and sum to 1, we have that πij = µij/µ++. Therefore,

π1 = P (Y = 1|X = 1) = π11/(π11 + π12) = µ11/(µ11 + µ12),
π2 = P (Y = 1|X = 2) = π21/(π21 + π22) = µ21/(µ21 + µ22).

b. If one conditions on the two row sums N1+ = n1+ = n1 and N2+ = n2+ = n2, we
get independent binomial rows sampling. This corresponds to N11 and N21 being
independent binomially distributed random variables

N11 ∼ Bin(n1, π1),
N21 ∼ Bin(n2, π2).

c. The maximum likelihood estimator of r is

r̂ =
π̂1
π̂2

=
N11/n1

N21/n2

=
30/200

20/100
= 0.75.

By means of a first order Taylor expansion, we have that

log(r̂) = log(π̂1)− log(π̂2)
≈ log(π1) + π̂1−π1

π1
− log(π2)− π̂2−π2

π2
.

Consequently, since π̂1 and π̂2 are independent for the sampling scheme in b), the
variance of log(r̂) satisfies

Var[log(r̂)] ≈ Var
(
π̂1−π1
π1

)
+ Var

(
π̂2−π2
π2

)
= Var(π̂1)

π2
1

+ Var(π̂2)
π2
2

= Var(N11)
n2
1π

2
1

+ Var(N21)
n2
2π

2
2

= n1π1(1−π1)
n2
1π

2
1

+ n2π2(1−π2)
n2
2π

2
2

= π1(1−π1)
n1π2

1
+ π2(1−π2)

n2π2
2

= 1−π1
n1π1

+ 1−π2
n2π2

.

(3)
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d. The standard error of log(r̂) is obtained by plugging in estimates of π1 and π2 into
the variance formula (3) and then taking the square root. That is,

SE[log(r̂)] =
√

V̂ar[log(r̂)]

=
√

1−π̂1
n1π̂1

+ 1−π̂2
n2π̂2

=
√

n12

n1n11
+ n22

n2n21

=
√

170
200·30 + 80

100·20
=
√

0.0683
= 0.2614.

This gives a Wald-based confidence interval

(log(r̂)− 1.96 · SE[log(r̂)], log(r̂) + 1.96 · SE[log(r̂)])
= (log(0.75)− 1.96 · 0.2614, log(0.75) + 1.96 · 0.2614)
= (−0.800, 0.225)

for log(r) with approximate coverage probability 95%. Applying the exponential
transformation to both sides of this interval, we finally obtain a confidence interval

(exp(−0.800), exp(0.225)) = (0.45, 1.25)

for r with approximate coverage probability 95%. Since 1 belongs to this interval,
the null hypothesis H0 that type of surgery does not influence the probability of
outcome (i.e. π1 = π2 or r = 1) is not rejected.

Problem 3

a. For the loglinear model (AC,AM,CM) we have that

µacm = exp(λ+ λAa + λCc + λMm + λACac + λAMam + λCMcm ),

for all cells a, c,m ∈ {0, 1}. If a = c = m = 0 are chosen as baseline levels, then
all loglinear parameters equal 0 if at least index is 0. This gives a parameter vector
with the remaining nonzero loglinear parameters

β = (λ, λA1 , λ
C
1 , λ

M
1 , λ

AC
11 , λ

AM
11 , λCM11 ).

The number of parameters is thus p(AC,AM,CM) = 7.

b. All of the listed models in the tables are balanced, and all three categorical variables
are binary. Therefore, each model has 1 baseline parameter, 3 main effect parameters
(1 per main effect), 1 = (2−1) · (2−1) parameter per second order association, and
1 = (2−1)·(2−1)·(2−1) parameter per third order association. Adding the number
of baseline, main effect, second order, and third order association parameters, we
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find the total number of parameters

p(A,C,M) = 1 + 3 + 0 + 0 = 4,
p(A,CM) = 1 + 3 + 1 + 0 = 5,
p(C,AM) = 1 + 3 + 1 + 0 = 5,
p(M,AC) = 1 + 3 + 1 + 0 = 5,

p(AC,AM) = 1 + 3 + 2 + 0 = 6,
p(AC,CM) = 1 + 3 + 2 + 0 = 6,
p(AM,CM) = 1 + 3 + 2 + 0 = 6,

p(AC,AM,CM) = 1 + 3 + 3 + 0 = 7,
p(ACM) = 1 + 3 + 3 + 1 = 8

of all models.

c. Since (ACM) is the saturated model, Akaike’s Information Criterion of each model
is

AIC(Model) = −2L(Model) + 2p(Model)
= −2[L(Model)− L(ACM)] + 2p(Model)− 2L(ACM)
= G2(Model) + 2p(Model)− 2L(ACM),

where L(Model) and G2(Model) are the log likelihood and deviance of each model
respectively. We select the best model, according to the AIC-criterion, by mini-
mizing AIC(Model), which is equivalent to minimizing G2(Model) + 2p(Model). We
found the number of parameters p(Model) of all models in b). This makes it possible
to fill in the second column of the given table, and then add a third column:

Model G2 p G2 + 2p
(A,C,M) 1286.0 4 1294.0
(A,CM) 534.2 5 544.2
(C,AM) 939.6 5 949.6
(M,AC) 843.8 5 853.8
(AC,AM) 497.4 6 509.4
(AC,CM) 92.0 6 104.0
(AM,CM) 187.8 6 199.8
(AC,AM,CM) 0.4 7 14.4
(ACM) 0.0 8 16

Since (AC,AM,CM) minimizes G2(Model) + 2p(Model), this is the model chosen
by the AIC-criterion.

d. In the first step of backward elimination (BE), the largest model among those listed
in the table, (ACM), is tested against the model (AC,AM,CM) for which the
third order association between the three variables has been removed, by means of
a likelihood ratio test. This gives

G2(AC,AM,CM |ACM) = −2[L(AC,AM,CM)− L(ACM)]
= G2(AC,AM,CM)−G2(ACM)
= 0.4− 0
< χ2

8−7(0.05) = 3.84,

(4)
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where df = p(ACM)−p(AC,AM,CM) = 8−7 = 1 is used for the quantile of the χ2-
distribution. Since the deviance does not exceed this quantile, the null hypothesis
(AC,AM,CM) is not rejected, and the smaller model is selected in favor of the
alternative hypothesis that (ACM) holds but not (AC,AM,CM).

In the second step of the BE scheme we test (AC,AM,CM) against each one of the
three models obtained by removing one second order association from (AC,AM,CM).
The log likelihood ratios of these three tests are found, as in (4), from the difference
in deviance:

G2(AC,AM |AC,AM,CM) = 497.4− 0.4 = 497.0,
G2(AC,CM |AC,AM,CM) = 92.0− 0.4 = 91.6,
G2(AM,CM |AC,AM,CM) = 187.8− 0.4 = 187.4,

Since all these three deviances (by a very large margin) exceed χ2
7−6(0.05) = 3.84,

the null hypothesis (the smaller model) is rejected in each test. Therefore, the BE
scheme stops after this second step and (AC,AM,CM) is selected, the same model
that was chosen with the AIC criterion in c).

Problem 4

a. Let πacm = µacm/µ+++ be the probability of cell (a, c,m) for multinomial sam-
pling when we condition on the total number of observations of the Poisson model
(AC,AM,CM). Regarding M as the outcome variable and A,C as predictor vari-
ables of this multinomial model, we find that M |A,C is an ANOVA type logistic
regression model, since

logitP (M = 1|A = a, C = c)
= log[P (M = 1|A = a, C = c)/P (M = 0|A = a, C = c)]
= log[(πac1/πac+)/(πac0/πac+)]
= log(πac1/πac0)
= log(µac1/µac0)
= log(µac1)− log(µac0)
= λ+ λAa + λCc + λM1 + λACac + λAMa1 + λCMc1 )
−(λ+ λAa + λCc + λM0 + λACac + λAMa0 + λCMc0 )
= α + βAa + βCc ,

(5)

with
α = λM1 − λM0 = λM1 ,
βAa = λAMa1 − λAMa0 = λAMa1 ,
βCc = λCMc1 − λCMc0 = λCMc1 .

In the last step we assumed that a = c = m = 0 are baseline levels, putting to
zero all loglinear parameters with at least one 0 index. Then all effect parameters
βA0 = βC0 = 0 vanish, and the remaining three nonzero parameters of the logistic
regression model, are β = (α, βM1 , β

C
1 ).
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b. The conditional odds ratio of marijuana use between those that use alcohol and
those that do not, conditional on cigarette use, is

θAM(c) =
P (M = 1|A = 1, C = c)/P (M = 0|A = 1, C = c)

P (M = 1|A = 0, C = c)/P (M = 0|A = 0, C = c)
. (6)

It follows from (5) that

log θAM(c) = logitP (M = 1|A = 1, C = c)− logitP (M = 1|A = 0, C = c)
= α + βA1 + βCc − (α + βA0 + βCc )
= βA1 − βA0
= βA1
= λAM11

when a = m = 0 are chosen as baseline levels of alcohol and marijuana use. Equiv-
alently,

θAM(c) = exp(λAM11 ). (7)

c. There is homogeneous association between alcohol use A and marijuana use M if
the conditional odds ratio θAM(c) does not depend on the level c of smoking. It
follows from (7) that model (AC,AM,CM) has homogeneous association, since the
right hand side of this equation does not depend on c. Similarly, one shows that
all loglinear models for which A and M are not involved in the same third order
association, have homogeneous association between A and M . Hence, among the
loglinear models listed in the table of Problem 3, all models except the saturated
model (ACM) have homogeneous association between A and M .

d. Since M and C are conditionally independent given A for model (AM,AC), it
follows that P (M |A,C) = P (M |A). Inserting this relation into (6), we find that
the conditional odds ratio

θAM(c) =
P (M = 1|A = 1)/P (M = 0|A = 1)

P (M = 1|A = 0)/P (M = 0|A = 0)
= θAM (8)

for model (AM,AC) equals the marginal odds ratio θAM , by the definition of the
latter. We estimate the marginal odds ratio from the marginal twoway table of A,M ,
by replacing each P (M = m|A = a) in (8) with P̂ (M = m|A = a) = na+m/na++.
Since all n0++ and n1++ cancel out, it follows that

θ̂AM =
n0+0n1+1

n0+1n1+0

=
(43 + 279) · (911 + 44)

(3 + 2) · (538 + 456)
= 61.9.

This is very different from the estimate θ̂AM(c) = 19.8 of the conditional odds ratio
between A and M for model (AC,AM,CM). However, we know from Problems 3c)
and 3d) that (AM,AC) fits data much worse than (AC,AM,CM). For this reason
the estimated (conditional) odds ratio of model (AC,AM,CM) is more trustworthy.
Therefore, the odds of using marijuana is about 20 times higher for those that use
alcohol, compared to those that don’t.
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Problem 5

a. This is a loglinear model with ti as an offset. Let λ = (λ0, λ1)
T be the parameter

vector. Then the likelihood function is

l(λ) =
3∏
i=0

e−µi
µyii
yi!
,

and the log likelihood

L(λ) = log l(λ)
=

∑3
i=0 [yi log(µi)− µi − log(yi!)]

= constant +
∑3
i=0 [yi(λ0 + λ1i)− ti exp(λ0 + λ1i)] ,

(9)

where

constant =
3∑
i=0

[yi log(ti)− log(yi!)]

does not depend on the two parameters λ0 and λ1.

b. Since
µi = ti exp(λ0 + λ1i), (10)

we find that
dµi
dλ

=

(
∂ui/∂λ0
∂ui/∂λ1

)
= µi

(
1
i

)
.

From this and (9) it follows that the likelihood score vector equals

u(λ) =

(
∂L(λ)/∂λ0
∂L(λ)/∂λ1

)
=

3∑
i=0

(yi − µi)
(

1
i

)
. (11)

The likelihood equations are obtained by solving

u(λ)λ=(λ̂0,λ̂1)
=

(
0
0

)

with respect to λ̂0 and λ̂1, which is equivalent to solving

3∑
i=0

yi

(
1
i

)
=

3∑
i=0

ti exp(λ̂0 + λ̂1i)

(
1
i

)
.

c. We first find the Hessian matrix

H(λ) =
d2L(λ)

d2λ
=

(
∂2L(λ)/∂2λ0 ∂2L(λ)/(∂λ0∂λ1)

∂2L(λ)/(∂λ0∂λ1) ∂2L(λ)/∂2λ1

)

of the log likelihood by differentiating (11) with respect to λ0 and λ1. This gives

H(λ) = −
3∑
i=0

µi

(
1 i
i i2

)
.
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Since H(λ) does not depend on data it is non-stochastic. Therefore the Fisher
information matrix equals

J(λ) = −E [H(λ)] = −H(λ) =
3∑
i=0

µi

(
1 i
i i2

)
. (12)

d. The covariance matrix Cov(λ̂) of the parameter vector is approximately J(λ)−1. It
is estimated by

Ĉov(λ̂) = Ĵ
−1

=

(
Ĵ
(−1)
00 Ĵ

(−1)
01

Ĵ
(−1)
10 Ĵ

(−1)
11

)
,

where

Ĵ = J(λ̂) = −H(λ̂) =
3∑
i=0

µ̂i

(
1 i
i i2

)
.

is the observed (expected) Fisher information matrix, and µ̂i = ti exp(λ̂0 + λ̂1i) the
estimated expected number of heart attacks within each group i of patients. The
one-sided Wald test, with approximate significance level α, rejects H0 in favor of Ha

when

zW =
λ̂1√
Ĵ
(−1)
11

exceeds the (1− α)-quantile zα of a standard normal distribution.
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