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Problem 1

a. Let π(x) = P (Y = 1|X = x). The simple linear logistic regression model asserts
that

logit(π(x)) = log

(
π(x)

1− π(x)

)
= α + xβ ⇐⇒ π(x) =

eα+xβ

1 + eα+xβ
, (1)

where α is the intercept and β the effect parameter.

b. Let

θ =
π(65)/[1− π(65)]

π(45)/[1− π(45)]
=

exp(α + 65β)

exp(α + 45β)
= exp(20β)

be the odds ratio of having experienced CHD symptoms between persons of age 65
and 45. The esimate of this odds ratio is

θ̂ = exp(20β̂) = exp(20 · 0.111) = 9.21.

c. We use the delta method with a logarithmic transformation. Therefore, we start by
calculating a Wald-type 95% confidence interval for log(θ) = 20β. It is given by

Ilog(θ) = 20β̂ ± 1.96 ·
√

V̂ar(20β̂)

= 20 · 0.111± 1.96 · 20 ·
√

0.0006
= (1.260, 3.180)

The corresponding 95% confidence interval for θ is

Iθ = (exp(1.260), exp(3.180)) = (3.52, 24.1).

Since 1 is not included in this interval, we conclude that the data set is sufficiently
large to support the conclusion that the odds of having experienced CHD symptoms
is significantly higher (at level 5%) at age 65 compared to age 45.

d. We want to test

H0 : Model (1) holds for age groups x1, x2, x3, x4,
Ha : Model (1) does not hold for all age groups x1, x2, x3, x4.
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To this end we use the chisquare goodness-of-fit statistic

X2 =
∑4
a=1

[
(na0−na(1−π̂a))2

na(1−π̂a) + (na1−naπ̂a)2

naπ̂a

]
=

∑4
a=1

(na1−naπ̂a)2

naπ̂a(1−π̂a) .

Insertion of numerical values from the table gives

X2 =
(3− 2.49)2

2.49(1− 0.100)
+

(8− 7.97)2

7.97(1− 0.295)
+

(11− 11.75)2

11.75(1− 0.560)
+

(21− 21.44)2

21.44(1− 0.794)
= 0.269.

Under H0, the X2 statistic has a X2
2 -distribution, since the number of degrees of

freedom for the test is d = 4 − 2. This follows since there are 4 parameters of the
saturated independent binomial rows model, whereas the null model (the logistic
regression model) has 2 parameters α and β. Since 0.269 < χ2

2(0.05) = 5.99, we do
not reject H0 at significance level 5%.

Problem 2

a. The likelihood function is

l =
n!∏
i,j nij!

∏
i,j

π
nij

ij . (2)

Taking the logarithm of (2) we find that the log likelihood function equals

L = log

(
n!∏
i,j nij!

)
+
∑
i,j

nij log(πij). (3)

Since the cell probabilities πij sum to 1, there are only IJ − 1 free parameters. We
may therefore parametrize the (log) likelihood by θ = (π11, π12, . . . , πIJ − 1) and
substitute πIJ = 1−∑(i,j) 6=(I,J) πij into (2) and (3).

b. When testing the null hypothesis H0 of independence between X and Y against the
alternative hypothesis Ha of non-independence, we formulate this as

H0 : πij = πi+π+j for all i, j,
Ha πij 6= πi+π+j for at least one i, j.

c. The estimated proportional reduction in entropy equals

Û =

∑
i,j π̂ij log(π̂ij/(π̂i+π̂+j))

−∑J
j=1 π̂+j log(π̂+j)

.

From this it follows that

−2nÛ
∑J
j=1 π̂+j log(π̂+j) = 2n

∑
i,j π̂ij log(π̂ij/(π̂i+π̂+j))

= 2
∑
ij nij log(nij/µ̂ij)

= G2

H0∼ χ2
d,

(4)
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where
µ̂ij = nπ̂i+π̂+j =

ni+n+j

n
are the fitted expected cell counts under the independence model H0. The last step
of (4) follows since G2 is the likelihood ratio statistic for testing H0 against Ha,
which under the null hypothesis (and large samples) is chisquare distributed with

d = (IJ − 1)− (I + J − 2) = (I − 1)(J − 1)

degrees of freedom. This follows since the full multinomial model, according to 3a),
has IJ − 1 parameters, whereas the independence model has I + J − 2 parameters
(I − 1 marginal probabilities for X and J − 1 marginal probabilities for Y ).

d. Inserting n = 1009, Û = 0.052 and the values of π̂+j from the table, we find that

−2nÛ
∑J
j=1 π̂+j log(π̂+j)

= −2 · 1009 · 0.0052 · [0.142 log(0.142) + 0.299 log(0.299) + 0.559 log(0.559)]
= 10.11
> χ2

4(0.05) = 9.49,

where in the last step we used that I = J = 3 and consequently d = (3−1)(3−1) =
4. We conclude that independence between age and job satisfaction is rejected at
significance level 5%.

Problem 3

a. The data set is a threeway contingency table, where X has I = 2 levels, Y has
J = 2 levels and Z has K = 3 levels. The four loglinear models that we will
compare are nested. In the table below. we have denoted them M0,M1,M2,M3,
and also computed the number of parameters p(M) of each model. All four models
share one intercept parameter λ and (I − 1) + (J − 1) + (K − 1) = 4 marginal
parameters. the two rightmost terms of the p(M) column. For M1,M2,M3, we also
added the relevant number of secdond order interaction parameters

M p(M)
M3 = (XY,XZ, Y Z) 10 = (J − 1) · (K − 1) + (I − 1) · (K − 1) + (I − 1) · (J − 1) + 4 + 1
M2 = (XY,XZ) 8 = (I − 1) · (K − 1) + (I − 1) · (J − 1) + 4 + 1
M1 = (XY,Z) 6 = (I − 1) · (J − 1) + 4 + 1
M0 = (X, Y, Z) 5 = 4 + 1

In the first step of the Forward Inclusion (FI) scheme we test

H0 : M0,
Ha : M1 \M0.

We use the likelihood ratio (LR) statistic

G2(M0|M1) = G2(M0)−G2(M1) = 147.0− 25.42 = 121.58
> χ2

p(M1)−p(M0)
(0.05) = χ2

1(0.05) = 3.84.
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Since H0 is rejected at significance level 5% we proceed to the second step of the FI
scheme and test

H0 : M1,
Ha : M2 \M1,

using the LR statistic

G2(M1|M2) = G2(M1)−G2(M2) = 25.42− 2.69 = 22.73
> χ2

p(M2)−p(M1)
(0.05) = χ2

2(0.05) = 5.99.

Since H0 is rejected also in the second step of the FI scheme, we proceed to the
third step and test

H0 : M2,
Ha : M3 \M2,

using the LR statistic

G2(M2|M3) = G2(M2)−G2(M3) = 2.69− 1.67 = 1.02
< χ2

p(M3)−p(M2)
(0.05) = χ2

2(0.05) = 5.99.

Since H0 is not rejected in the third step of the FI scheme, M2 = (XY,XZ) is the
selected model.

b. For model M1 = (XY,Z) we have that

µijk =
µij+µ++k

µ+++

=⇒ µ̂ijk =
nij+n++k

n+++

.

In particular,

µ̂122 =
n12+n++2

n+++

=
(25 + 39 + 13)(41664 + 4291 + 39 + 26)

105633
=

77 · 46020

105636
= 33.54.

For model M2 = (XY,XZ) we have that

µijk =
µij+µi+k
µi++

=⇒ µ̂ijk =
nij+ni+k
ni++

.

In particular,

µ̂122 =
n12+n1+2

n1++

=
(25 + 39 + 13)(41664 + 39)

39160 + 41664 + 15163 + 25 + 39 + 13
=

77 · 41703

96064
= 33.42.

c. Since X and Y are jointly independent of Z for model M1, it follows that

P (Y = j|X = i, Z = k) = P (Y = j|X = i) = µij+/µi++.

for all i, j, k. From this it follows that the conditional odds ratio

θXY(k) =
P (Y = 2|X = 2)/P (Y = 1|X = 2)

P (Y = 2|X = 1)/P (Y = 1|X = 1)
= θXY =

µ11+µ22+

µ12+µ21+
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collapses to the marginal odds ratio between X and Y . Therefore the maximum
likelihood estimate of θXY(k) = θXY is

θ̂XY =
n11+n22+

n12+n21+

=
(39160 + 41664 + 15163)(26 + 26 + 10)

(25 + 39 + 13)(3882 + 4291 + 1337)
=

95987 · 62

77 · 9510
= 8.13.

Consequently, according to model M1, the estimated odds of dying in leukemia is
8.13 times higher among those with a high radiation dose, compared the estimated
odds among those with a low radiation dose, regardless of age.

Problem 4

a. The expected cell counts µijk of the loglinear modelM2 = (XY,XZ) are parametrized
as

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik , 1 ≤ i, j ≤ 2, 1 ≤ k ≤ 3.

If we choose the lowest level (i = j = k = 1) of each variable as baseline, any
parameter with at least one index at its lowest level is put to zero in order to avoid
overparametrization. The remaining eight freely variable parameters are

θ = (λ, λX2 , λ
Y
2 , λ

Z
2 , λ

Z
3 , λ

XY
22 , λXZ22 , λ

XZ
23 ).

Similarly, for model M3 = (XY,XZ, Y Z) we have that

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk , 1 ≤ i, j ≤ 2, 1 ≤ k ≤ 3.

If the lowest level of each variable is chosen as baseline, we get ten freely variable
parameters

θ = (λ, λX2 , λ
Y
2 , λ

Z
2 , λ

Z
3 , λ

XY
22 , λXZ22 , λ

XZ
23 , λ

Y Z
22 , λ

Y Z
23 ).

b. Write πijk = µijk/µ+++ for the cell probabilities of model M3 under multinomial
sampling. Then

logitP (Y = 2|X = i, Z = k)
= logP (Y = 2|X = i, Z = k)− logP (Y = 1|X = i, Z = k)
= log(πi2k/πi+k)− log(πi1k/πi+k)
= log(πi2k)− log(πi1k)
= log(µi2k/µ+++)− log(µi1k/µ+++)
= log(µi2k)− log(µi1k)
= (λ+ λXi + λY2 + λZk + λXYi2 + λXZik + λY Z2k )
−(λ+ λXi + λY1 + λZk + λXYi1 + λXZik + λY Z1k )
= (λY2 − λY1 ) + (λXYi2 − λXYi1 ) + (λY Z2k − λY Z1k )
= λY2 + λXYi2 + λY Z2k

=: α + βXi + βZk ,

(5)

if we use the parameter constraints of M3 from a). It follows from (5) that Y |X,Z
is a logistic regression model with four nonzero parameters α = λY2 , βX2 = λXY22 ,
βZ2 = λY Z22 and βZ3 = λY Z23 .
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c. The likelihood of the loglinear models M2 and M3, with parameter vector θ, can be
factorized into two parts;

l(θ) =
∏
i,j,k P (Nijk = nijk)

=
∏
i,k P (Ni+k = ni+k)

·∏i,k

(
ni+k

ni2k

)
P (Y = 2|X = i, Z = k)ni2kP (Y = 1|X = i, Z = k)ni1k ,

(6)

where the first term on the right hand side of (6) corresponds to the likelihood of the
saturated loglinear model (XZ) for the two predictor variablesX and Z, whereas the
second term corresponds to the likelihood of the logistic regression models derived
from M2 and M3 respectively. Taking the logarithm of both sides of (6) we find that
the log likelihood of M2 and M3 is given by

L(θ) =
∑
i,k log[P (Ni+k = ni+k)]

+
∑
i,k log

[(
ni+k

ni2k

)
P (Y = 2|X = i, Z = k)ni2kP (Y = 1|X = i, Z = k)ni1k

]
,

(7)
i.e. the sum of the log likelihood for (XZ) and the log likelihood of the logistic
regression model derived from M2 and M3 respectively.

Denote the logistic regression models obtained from M2 = (XY,XZ) by (X),
whereas the logistic regression model obtained from M3 = (XY,XZ, Y Z) is written
as (X +Z). Let L(M2) and L(M3) be the maximized the log likelihoods of M2 and
M3, obtained by maximizing (7) with respect to the parameter vector θ. Since the
saturated model (XZ) is used for the log likelihood of the first term in (7), it follows
that the two terms in (7) can be maximized separately, Therefore, the maximized
log likelihoods of M2 and M3 satisfy

L(M2) = L(XZ) + L(X),
L(M3) = L(XZ) + L(X + Z)

respectively, where L(XZ) is the maximized log likelihood of the loglinear model
(XZ), whereas L(X) and L(X+Z) are the maximized log likelihoods of the two lo-
gistic regression models. Since the deviances of M2 and M3 are provided in Problem
3, it follows that

2L(X+Z)−2L(X) = 2L(M3)−2L(M2) = G2(M2)−G2(M3) = 2.69−1.67 = 1.02.

We know from 4b) that (X + Z) has four parameters. In the same way it can be
shown that (X) has two parameters α = λY2 and βX2 = λXY22 . Therefore

AIC(X) = −2L(X) + 2 · 2 = (1.02 + 2 · 2− 2 · 4)− 2L(X + Z) + 2 · 4
= −2.98 + AIC(X + Z) < AIC(X + Z).

From this we conclude that the smaller logistic regression model X (derived from
M2), is chosen by the AIC criterion.
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Problem 5

a. Recall that zS is approximately standard normal under the null hypothesis H0 :
β = 0. Since the alternative hypothesis Ha : β > 0 is one-sided, we reject the null
hypothesis at level 0.1 %, if zS > z0.001 = 3.09. Evaluation of the score statistic
yields

zS =
300.5√

0.43(1− 0.43) · 14475
= 5.045 > 3.09.

Consequently, the dataset is large enough in order to reject H0 at significance level
0.1 %.

b. We have that

L(α, β) =
∑4
a=1

[
log

(
na

na1

)
+ na1 log πa

1−πa + na log(1− πa)
]

=
∑4
a=1

{
log

(
na

na1

)
+ na1(α + βxa)− na log[1 + exp(α + βxa)]

}
.

(8)

c. Differentiating (8) with respect to α and β we find that

uα(α, β) =
∑
a(na1 − naπa),

uβ(α, β) =
∑
a xa(na1 − naπa).

(9)

d. It is assumed that the sampling scheme of the age grouped data set has independent
binomial rows sampling, with Na1 ∼ Bin(na, πa). From this and (9) it follows that

Jαα(α, β) = Var(uαα(α, β)) =
∑
a Var(Na1) =

∑
a naπa(1− πa),

Jαβ(α, β) = Cov(uαα(α, β), uββ(α, β)) =
∑
a xaVar(Na1) =

∑
a xanaπa(1− πa),

Jββ(α, β) = Var(uββ(α, β)) =
∑
a x

2
aVar(Na1) =

∑
a x

2
anaπa(1− πa).

(10)

e. It follows from the second equation of (9) and the first part of the hint that the
numerator of the score statistic equals

uβ(α̂(0), 0) =
∑
a

xa(na1 − nap) =
∑
a

(xa − x̄)(na1 − nap) =
∑
a

(xa − x̄)na1, (11)

where in the second and third steps we used the definitions of p and x̄ respectively.
As for the denominator of the score statistic, we combine (10) with the first part of
the hint. This gives

Jαα(α̂(0), 0) = p(1− p)∑a na,
Jαβ(α̂(0), 0) = p(1− p)∑a xana,
Jββ(α̂(0), 0) = p(1− p)∑a x

2
ana.

(12)

Then we use the second part of the hint, together with (12), and deduce

Var[uβ(α̂(0), 0)] = p(1− p)∑a x
2
ana − [p(1− p)∑a xana]

2 / [p(1− p)∑a na]

= p(1− p)
[∑

a x
2
ana − (

∑
a xana)

2 /
∑
a na

]
= p(1− p)∑a(xa − x̄)2na.

(13)
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Dividing (11) by the square root of (13), we finally arrive at the sought for expression

zS =

∑
a(xa − x̄)na1√

p(1− p)∑a(xa − x̄)2na

of the score statistic.
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