Solutions for Examination

Categorical Data Analysis, February 3, 2021

Problem 1

a. Under binomial rows sampling we have that

$$
\begin{aligned}
& N_{00} \sim \operatorname{Bin}\left(7, \pi_{0}\right), \\
& N_{10} \sim \operatorname{Bin}\left(8, \pi_{1}\right)
\end{aligned}
$$

are independent and binomially distributed. Therefore the likelihood $l\left(\pi_{0}, \pi_{1}\right)$ is given by the joint distribution of N_{01} and N_{11}, i.e.

$$
\begin{align*}
l\left(\pi_{0}, \pi_{1}\right) & =P\left(N_{00}=5, N_{10}=2\right) \\
& =\binom{7}{5} \pi_{0}^{5}\left(1-\pi_{0}\right)^{2} \cdot\binom{8}{2} \pi_{1}^{2}\left(1-\pi_{1}\right)^{6} \tag{1}\\
& =588 \cdot \pi_{0}^{5}\left(1-\pi_{0}\right)^{2} \pi_{1}^{2}\left(1-\pi_{1}\right)^{6} .
\end{align*}
$$

b. The null hypothesis and the alternative hypothesis correspond to

$$
\begin{array}{cl}
H_{0}: & \pi_{0}=\pi_{1}, \\
H_{a}: & \pi_{0}>\pi_{1}, \tag{2}
\end{array}
$$

respectively. Introducing the odds ratio

$$
\begin{equation*}
\theta=\frac{\pi_{0} /\left(1-\pi_{0}\right)}{\pi_{1} /\left(1-\pi_{1}\right)}, \tag{3}
\end{equation*}
$$

we find that (2) is equivalent to

$$
\begin{array}{ll}
H_{0}: & \theta=1, \\
H_{a}: & \theta>1 .
\end{array}
$$

c. Let $n_{i j}$ be the observed cell counts. If we condition on the two row sums n_{i+} and the two column sums n_{+j}, then N_{00} has a hypergeometric distribution under H_{0}, i.e.

$$
\begin{align*}
& P_{H_{0}}\left(N_{00}=k \mid N_{0+}=7, N_{1+}=8, N_{+0}=7, N_{+1}=8\right) \\
& \quad=\binom{7}{k}\binom{8}{7-k} /\binom{15}{7} \tag{4}
\end{align*}
$$

for $0 \leq k \leq 7$.

The null hypothesis is rejected for large values of N_{00}, since then it is more likely that H_{a} holds. Denote the conditioning above by three dots (...). Since $n_{00}=5$, we find that

$$
\begin{aligned}
P \text {-value } & =P_{H_{0}}\left(N_{11}=5 \mid \ldots\right)+P_{H_{0}}\left(N_{00}=6 \mid \ldots\right)+P_{H_{0}}\left(N_{00}=7 \mid \ldots\right) \\
& =\binom{7}{5}\binom{8}{2} /\binom{15}{7}+\binom{7}{6}\binom{8}{1} /\binom{15}{7}+\binom{7}{7}\binom{8}{0} /\binom{15}{7} \\
& =(21 \cdot 28+7 \cdot 8+1 \cdot 1) / 6435 \\
& =645 / 6435 \\
& =0.100 .
\end{aligned}
$$

Hence we cannot reject the null hypothesis, that the lady guesses at random, at level 5%.
d. Starting with the joint distribution of N_{00} and N_{10}, as in (1), we condition on the columns sums as well. Since we already condition on row sums in (1), and since $N_{+1}=15-N_{+0}$, we only need to write out N_{+0} in the conditioning. This gives

$$
\begin{align*}
P\left(N_{00}=k \mid N_{+0}=7\right) & =P\left(N_{00}=k, N_{10}=7-k\right) / P\left(N_{+0}=7\right) \\
& \propto P\left(N_{00}=k, N_{10}=7-k\right) \\
& =\binom{7}{k} \pi_{0}^{k}\left(1-\pi_{0}\right)^{7-k} \cdot\binom{8}{7-k} \pi_{1}^{7-k}\left(1-\pi_{1}\right)^{8-(7-k)} \tag{5}\\
& \propto\binom{8}{k}\binom{8}{7-k} \theta^{k},
\end{align*}
$$

for $k=0,1, \ldots, 7$, where the odds ratio (3) was used in the fourth step. Expressions to the right and left of a proportionality sign \propto in (5) differ by a multiplicative constant, not depending on k. The proportionality constant of the last step is chosen so that all probabilities sum to one. This gives a non-central hypergeometric distribution

$$
P\left(N_{00}=k \mid N_{+0}=7\right)=\frac{\binom{7}{k}\binom{8}{7-k} \theta^{k}}{\sum_{l=0}^{7}\binom{7}{l}\binom{8}{7-l} \theta^{l}},
$$

for $0 \leq k \leq 7$. The special case $\theta=1$ is identical to the hyptergeometric distribution (4).

Problem 2

a. Because of independent binomial rows sampling, the log likelihood of the dataset is

$$
\begin{align*}
L(\pi, \Delta) & =\log \left(\begin{array}{l}
n \\
n_{0+} \\
n_{01}
\end{array}\right)+n_{00} \log (1-\pi-\Delta)+n_{01} \log (\pi+\Delta) \tag{6}\\
& +\log \binom{n_{1+}}{n_{11}}+n_{10} \log (1-\pi)+n_{11} \log (\pi),
\end{align*}
$$

with $n_{00}=2350, n_{01}=42, n_{10}=2417$, and $n_{11}=53$.
b. Inserting the numbers of the table into the definitions of $\hat{\Delta}$ and $\hat{\pi}$, we find that

$$
\begin{aligned}
\hat{\Delta} & =42 / 2392-53 / 2470=0.00390 \\
\hat{\pi} & =95 / 4862=0.0195
\end{aligned}
$$

This gives a score statistic

$$
z_{S}=\frac{0.00390}{\sqrt{\left(\frac{1}{2392}+\frac{1}{2470}\right) \cdot 0.0195(1-0.0195)}}=-0.983
$$

Since $z_{S}>-1.645$ we conclude that H_{0} cannot be rejected at signficance level 5%.
c. By differentiating (6) with respect to π and Δ, we find that

$$
\begin{align*}
u_{\pi}(\pi, \Delta) & =n_{01} /(\pi+\Delta)-n_{00} /(1-\pi-\Delta)+n_{11} / \pi-n_{10} /(1-\pi) \\
u_{\Delta}(\pi, \Delta) & =n_{01} /(\pi+\Delta)-n_{00} /(1-\pi-\Delta) \tag{7}
\end{align*}
$$

d. We start by finding the elements of the Hessian matrix $\boldsymbol{H}(\pi, \Delta)$. That is, we differentiate (7) with respect to π and Δ, and obtain

$$
\begin{align*}
H_{\pi \pi}(\pi, \Delta)= & \partial u_{\pi}(\pi, \Delta) / \partial \pi \\
= & -n_{01} /(\pi+\Delta)^{2}-n_{00} /(1-\pi-\Delta)^{2} \\
& -n_{11} / \pi^{2}-n_{10} /(1-\pi)^{2} \\
H_{\pi \Delta}(\pi, \Delta)= & \partial u_{\pi}(\pi, \Delta) / \partial \Delta \tag{8}\\
= & -n_{01} /(\pi+\Delta)^{2}-n_{00} /(1-\pi-\Delta)^{2} \\
H_{\Delta \Delta}(\pi, \Delta)= & \partial u_{\Delta}(\pi, \Delta) / \partial \Delta \\
= & -n_{01} /(\pi+\Delta)^{2}-n_{00} /(1-\pi-\Delta)^{2}
\end{align*}
$$

Since the rows of the table have independent binomial distributions, it follows that the expected cell counts are $E\left(N_{00}\right)=n_{0+}(1-\pi-\Delta), E\left(N_{01}\right)=n_{0+}(\pi+\Delta)$, $E\left(N_{10}\right)=n_{1+}(1-\pi)$, and $E\left(N_{11}\right)=n_{1+} \pi$. Inserting these expectations into (8), and changing sign, we find that the elements of the Fisher information matrix are given by

$$
\begin{align*}
& J_{\pi \pi}(\pi, \Delta)=-E\left[H_{\pi \pi}(\pi, \Delta)\right]=n_{0+} /[(\pi+\Delta)(1-\pi-\Delta)]+n_{1+} /[\pi(1-\pi)], \\
& J_{\pi \Delta}(\pi, \Delta)=-E\left[H_{\pi \Delta}(\pi, \Delta)\right]=n_{0+} /[(\pi+\Delta)(1-\pi-\Delta)], \\
& J_{\Delta \Delta}(\pi, \Delta)=-E\left[H_{\Delta \Delta}(\pi, \Delta)\right]=n_{0+} /[(\pi+\Delta)(1-\pi-\Delta)] . \tag{9}
\end{align*}
$$

e. It is convenient to introduce $\hat{\pi}_{0}=n_{01} / n_{0+}$ and $\hat{\pi}=\hat{\pi}(0)=n_{+1} / n$. In view of (7), the numerator of the score test is

$$
\begin{align*}
u(\hat{\pi}, 0) & =n_{01} / \hat{\pi}-n_{00} /(1-\hat{\pi}) \\
& =n_{0+}\left[\hat{\pi}_{0} / \hat{\pi}-\left(1-\hat{\pi}_{0}\right) /(1-\hat{\pi})\right] \\
& =n_{0+}\left(\hat{\pi}_{0}-\hat{\pi}\right) /[\hat{\pi}(1-\hat{\pi})] \tag{10}\\
& =n_{0+} n_{1+} \hat{\Delta} /[n \hat{\pi}(1-\hat{\pi})],
\end{align*}
$$

where in the last step we used that $\hat{\pi}_{0}-\hat{\pi}=\left(n_{1+} / n\right) \hat{\Delta}$. On the other hand, making use of (9) and the hint, we find that

$$
\begin{align*}
\operatorname{Var}[u(\hat{\pi}, 0)] & =J_{\Delta \Delta}(\hat{\pi}, 0)-J_{\pi \Delta}(\hat{\pi}, 0)^{2} / J_{\pi \pi}(\hat{\pi}, 0) \\
& =n_{0+} /[\hat{\pi}(1-\hat{\pi})]-\left\{n_{0+} /[\hat{\pi}(1-\hat{\pi})]\right\}^{2} /\{n /[\hat{\pi}(1-\hat{\pi})]\} \tag{11}\\
& =n_{0+} n_{1+} /[n \hat{\pi}(1-\hat{\pi})] .
\end{align*}
$$

Finally, by taking the ratio of (10) and the square root of (11), we obtain the sought for expression

$$
z_{S}=\frac{\hat{\Delta}}{\sqrt{\frac{n}{n_{0}+n_{1+}} \hat{\pi}(1-\hat{\pi})}}=\frac{\hat{\Delta}}{\sqrt{\left(\frac{1}{n_{0+}}+\frac{1}{n_{1+}}\right) \hat{\pi}(1-\hat{\pi})}}
$$

of the score statistic.

Problem 3

a. The loglinear parametrization of $(X Z, Y Z)$ is

$$
\begin{equation*}
\mu_{i j k}=\exp \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}\right) \tag{12}
\end{equation*}
$$

for $0 \leq i, j, k \leq 1$. Assume that $X=0, Y=0$ and $Z=0$ are chosen as baseline levels. Then those loglinear parameters are put to zero for which at least one index i, j or k equals 0 . The remaining parameters are

$$
\begin{equation*}
\boldsymbol{\beta}=\left(\lambda, \lambda_{1}^{X}, \lambda_{1}^{Y}, \lambda_{1}^{Z}, \lambda_{11}^{X Z}, \lambda_{11}^{Y Z}\right) . \tag{13}
\end{equation*}
$$

b. It follows from (12) that

$$
\begin{equation*}
\mu_{i j k}=A_{k} B_{i k} C_{j k}, \tag{14}
\end{equation*}
$$

with $A_{k}=\exp \left(\lambda+\lambda_{k}^{Z}\right), B_{i k}=\exp \left(\lambda_{i}^{X}+\lambda_{i k}^{X Z}\right)$ and $C_{j k}=\exp \left(\lambda_{j}^{Y}+\lambda_{j k}^{Y Z}\right)$. Then, summing over one of i or j, or over both indeces simultaneously in (14), we find that

$$
\begin{aligned}
\mu_{i+k} & =A_{k} B_{i k} C_{+k}, \\
\mu_{+j k} & =A_{k} B_{+k} C_{j k}, \\
\mu_{++k} & =A_{k} B_{+k} C_{+k} .
\end{aligned}
$$

Consequently,

$$
\frac{\mu_{i+k} \mu_{+j k}}{\mu_{++k}}=\frac{A_{k} B_{i k} C_{+k} \cdot A_{k} B_{+k} C_{j k}}{A_{k} B_{+k} C_{+k}}=A_{k} B_{i k} C_{j k}=\mu_{i j k} .
$$

Alternatively, we may work directly with the cell probabilities $\pi_{i j k}=\mu_{i j k} / \mu_{+++}$. Since X and Y are conditionally independent given Z for model $(X Z, Y Z)$, it follows that

$$
\pi_{i j k}=\pi_{++k} \pi_{i j \mid k}=\pi_{++k} \pi_{i+\mid k} \pi_{+j \mid k}=\pi_{++k} \cdot \frac{\pi_{i+k}}{\pi_{++k}} \cdot \frac{\pi_{+j k}}{\pi_{++k}}=\frac{\pi_{i+k} \pi_{+j k}}{\pi_{++k}},
$$

and hence

$$
\mu_{i j k}=\mu_{+++} \pi_{i j k}=\mu_{+++} \cdot \frac{\frac{\mu_{i+k}}{\mu_{++}} \cdot \frac{\mu_{+j k}}{\mu_{++}}}{\frac{\mu_{++k}}{\mu_{++}}}=\frac{\mu_{i+k} \mu_{+j k}}{\mu_{++k}} .
$$

c. The maximum likelihood estimates

$$
\hat{\mu}_{i j k}=\frac{n_{i+k} n_{+j k}}{n_{++k}}
$$

of the expected cell counts are obtained by replacing $\mu_{i+k}, \mu_{+j k}$ and μ_{++k} by estimates $n_{i+k}, n_{+j k}$ and n_{++k} respecitvely. From the given marginals of the two partial tables we can read off all $n_{i+k}, n_{+j k}$ and n_{++k}. Applying this for $i=j=k=1$, we find that

$$
\hat{\mu}_{111}=\frac{n_{1+1} n_{+11}}{n_{++1}}=\frac{49 \cdot 51}{98}=25.5
$$

which agrees with the value in cell $(i, j, k)=(1,1,1)$, in the rightmost partial table of Appendix B.
d. The chisquare goodness-of-fit statistic for testing $(X Z, Y Z)$, against the saturated model ($X Y Z$), is

$$
\begin{aligned}
X^{2} & =\sum_{i j k}\left(n_{i j k}-\hat{\mu}_{i j k}\right)^{2} / \hat{\mu}_{i j k} \\
& =(841-838.2)^{2} / 838.2+\ldots+(29-25.5)^{2} / 25.5 \\
& =9.36 \\
& >\chi_{2}^{2}(0.05)=5.99
\end{aligned}
$$

where in the last step we used that $\mathrm{df}=8-6=2$, since the saturated model has $2 \times 2 \times 2=8$ parameters, whereas the conditional independence model ($X Z, Y Z$) has 6 parameters according to (13). Therefore we reject conditional independence between X and Y given Z at level 5%. This suggests there might be other common risk factors for mothers and children.
e. From the two partial tables we obtain the following estimated conditional odds ratios:

$$
\begin{aligned}
& \hat{\theta}_{X Y(0)}=(841 \cdot 4) /(27 \cdot 30)=4.153, \\
& \hat{\theta}_{X Y(1)}=(27 \cdot 29) /(22 \cdot 20)=1.779 .
\end{aligned}
$$

Since $\hat{\theta}_{X Y(0)}$ and $\hat{\theta}_{X Y(1)}$ are both larger than 1 , this indicates other possible common (genetic or shared environmental) risk factors, whereas model $(X Y, Y Z)$ has $\theta_{(0)}^{X Y}=\theta_{(1)}^{X Y}=1$. Since $\hat{\theta}_{X Y(0)}$ is larger than $\hat{\theta}_{X Y(1)}$, this indicates that there is no homogeneous association $\theta_{(0)}^{X Y}=\theta_{(1)}^{X Y}$ between X and Y given Z, as for model $(X Z, Y Z)$. It rather indicates that there is not only a second order association term between X and Y, but also a third order association term between X, Y and Z.

Problem 4

a. The loglinear parametrization for $(X Y, X Z, Y Z)$ requires addition of an $X Y$-interaction term compared to (12). This gives

$$
\begin{equation*}
\mu_{i j k}=\exp \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}\right) . \tag{15}
\end{equation*}
$$

b. Let $\pi_{i j k}=\mu_{i j k} / \mu_{+++}=P(X=i, Y=j, Z=k)$ be the cell probabilities, and $\pi_{i+k}=P(X=i, Z=k)$ the corresponding marignal probability for X and Z..

Using (15) we find that

$$
\begin{aligned}
\operatorname{logit}[P(Y=1 \mid X=i, Z=k)] & =\log [P(Y=1 \mid X=i, Z=k) / P(Y=0 \mid X=i, Z=k)] \\
& =\log \left[\left(\pi_{i 1 k} / \pi_{i+k}\right) /\left(\pi_{i 0 k} / \pi_{i+k}\right)\right] \\
& =\log \left(\pi_{i 1 k} / \pi_{i 0 k}\right) \\
& =\log \left(\mu_{i 1 k} / \mu_{i 0 k}\right) \\
& =\left(\lambda+\lambda_{i}^{X}+\lambda_{1}^{Y}+\lambda_{k}^{Z}+\lambda_{i 1}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{1 k}^{Y Z}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{0}^{Y}+\lambda_{k}^{Z}+\lambda_{i 0}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{0 k}^{Y Z}\right) \\
& =\alpha+\beta_{i}^{X}+\beta_{k}^{Z},
\end{aligned}
$$

where in the last step we used that

$$
\begin{aligned}
\alpha & =\lambda_{1}^{Y}-\lambda_{0}^{Y}, \\
\beta_{i}^{X} & =\lambda_{i 1}^{X Y}-\lambda_{i 0}^{X Y}, \\
\beta_{k}^{Z} & =\lambda_{1 k}^{Y Z}-\lambda_{0 k}^{Y Z} .
\end{aligned}
$$

If $X=0$ and $Z=0$ are chosen as baseline levels, then any loglinear parameter with $i=0$ or $k=0$ among it indeces is zero, which implies $\beta_{0}^{X}=\beta_{0}^{Z}=0$. The only remaining parameters are $\left(\alpha, \beta_{1}^{X}, \beta_{1}^{Z}\right)$.
c. Since there is no third order interaction $X Y Z$ in the model, the conditional odds ratio between X and Y does not depend on the level k of the conditioning variable Z. We find that

$$
\begin{aligned}
\log \left(\theta_{X Y(k)}\right) & =\operatorname{logit}[P(Y=1 \mid X=1, Z=k)]-\operatorname{logit}[P(Y=1 \mid X=0, Z=k)] \\
& =\alpha+\beta_{1}^{X}+\beta_{k}^{Z}-\left(\alpha+\beta_{0}^{X}+\beta_{k}^{Z}\right) \\
& =\beta_{1}^{X}-\beta_{0}^{X} \\
& =\beta_{1}^{X} .
\end{aligned}
$$

A Wald type approximate 95% confidence interval for $\log \left(\theta_{X Y(k)}\right)$ is

$$
\begin{aligned}
& \left(\hat{\beta}_{1}^{X}-1.96 \sqrt{\widehat{\operatorname{Var}}\left(\hat{\beta}_{1}^{X}\right)}, \hat{\beta}_{1}^{X}+1.96 \sqrt{\left.\widehat{\operatorname{Var}\left(\hat{\beta}_{1}^{X}\right)}\right)}\right. \\
= & (0.8347-1.96 \sqrt{0.1255}, 0.8347+1.96 \sqrt{0.1255}) \\
= & (0.1404,1.5290),
\end{aligned}
$$

and the one for $\theta_{X Y(k)}$ is

$$
I=(\exp (0.1404), \exp (1.5290))=(1.15,4.61)
$$

Since $1 \notin I$, this indicates (weakly) that there are additional common risk factors for the mother and child apart from Z. (Notice however, from the solution of Problem 3e), that a third order interaction between X, Y, and Z should possibly be included in the model as well.)
d. Let $\pi(i, k)=P(Y=1 \mid X=i, Z=k)$. Our goal is to find a confidence interval for $\pi(0,1)$. We will apply the delta method, based on the logit transformation. Recall from Problem 4b) that

$$
\operatorname{logit}[\pi(0,1)]=\operatorname{logit}[P(Y=1 \mid X=0, Z=1)]=\alpha+\beta_{1}^{Z}
$$

In order to find a confidence interval for $\operatorname{logit}[\pi(0,1)]$, we notice that the standard error is

$$
\begin{aligned}
\mathrm{SE} & =\sqrt{\widehat{\operatorname{Var}}\left(\hat{\alpha}+\hat{\beta}_{1}^{Z}\right)} \\
& =\sqrt{\widehat{\operatorname{Var}}(\hat{\alpha})+2 \widehat{\operatorname{Cov}}\left(\hat{\alpha}, \hat{\beta}_{1}^{Z}\right)+\widehat{\operatorname{Var}}\left(\hat{\beta}_{1}^{Z}\right)} \\
& =\sqrt{0.0342-2 \cdot 0.0295+0.0977} \\
& =\sqrt{0.0792} \\
& =0.27 .
\end{aligned}
$$

This gives a Wald type 95% confidence interval

$$
\begin{aligned}
& \left(\hat{\alpha}+\hat{\beta}_{1}^{Z}-1.96 \cdot \mathrm{SE}, \hat{\alpha}+\hat{\beta}_{1}^{Z}+1.96 \cdot \mathrm{SE}\right) \\
& =(-3.3818+3.0497-1.96 \cdot 0.27,-3.3818+3.0497+1.96 \cdot 0.27) \\
& (-0.861,0.197)
\end{aligned}
$$

for $\operatorname{logit}[\pi(0,1)]$, which we transform to a confidence interval

$$
\left(\frac{\exp (-0.861)}{1+\exp (-0.861)}, \frac{\exp (0.197)}{1+\exp (0.197)}\right)=(0.297,0.549)
$$

for $\pi(0,1)$.

Problem 5

a. By differentiating the density/probability function formula for the exponential dispersion family (EDF) twice with respect to the natural parameter θ_{i} of observation i, we find that the score function and Hessian of this observation are

$$
\begin{equation*}
u_{i}(y)=\frac{\partial \log f\left(y ; \theta, \omega_{i}, \phi\right)}{\partial \theta_{i}}=\frac{\omega_{i}\left(y-b^{\prime}\left(\theta_{i}\right)\right)}{\phi} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i}(y)=\frac{u_{i}(y)}{\partial \theta_{i}}=-\frac{\omega_{i} b^{\prime \prime}\left(\theta_{i}\right)}{\phi} \tag{17}
\end{equation*}
$$

respectively.
b. Since $n Y_{i} \sim \operatorname{Bin}\left(n_{i}, \pi_{i}\right)$, we have that

$$
\begin{aligned}
P\left(Y_{i}=y\right) & =P\left(n_{i} Y_{i}=n_{i} y\right) \\
& =\binom{n_{i}}{n_{i y} y} \pi^{n_{i} y}(1-\pi)^{n_{i}-n_{i} y} \\
& =\binom{n_{i}}{n_{i} y}\left[\left(\pi_{i} /\left(1-\pi_{i}\right)\right]_{i}^{n_{i} y}\left(1-\pi_{i}\right)^{n_{i}}\right. \\
& =\exp \left\{\left[y \log \left(\pi_{i} / 1-\pi_{i}\right)-\log (1-\pi)^{-1}\right] /\left(1 / n_{i}\right)+\log \left(\binom{n_{i}}{n_{i} y}\right)\right\} .
\end{aligned}
$$

This corresponds to an EDF with

$$
\begin{align*}
\theta_{i} & =\log \left[\pi_{i} /\left(1-\pi_{i}\right)\right], \\
\omega_{i} & =n_{i}, \\
\phi & =1, \tag{18}\\
b\left(\theta_{i}\right) & =\log \left[1 /\left(1-\pi_{i}\right)\right]=\log \left(1+e^{\theta_{i}}\right), \\
c(y, \phi) & =\log \left(\binom{n_{i}}{n_{i} y}\right) .
\end{align*}
$$

From this it follows that

$$
\begin{align*}
b^{\prime}\left(\theta_{i}\right) & =e^{\theta_{i}} /\left(1+e^{\theta_{i}}\right)=\pi_{i}, \\
b^{\prime \prime}\left(\theta_{i}\right) & =e^{\theta_{i}} /\left(1+e^{\theta_{i}}\right)^{2}=\pi_{i}\left(1-\pi_{i}\right) . \tag{19}
\end{align*}
$$

Making use of (16)-(17) and (18)-(19), we find that

$$
\begin{align*}
u_{i} & =n_{i}\left(y-\pi_{i}\right) \\
H_{i} & =-n_{i} \pi_{i}\left(1-\pi_{i}\right) . \tag{20}
\end{align*}
$$

c. Recall that $E\left(Y_{i} \mid \boldsymbol{x}_{i}\right)=\pi_{i}$ and that the natural parameter is θ_{i}. Since a canonoical link function g is used, it follows from the first equation of (18) that

$$
\begin{equation*}
g\left(\pi_{i}\right)=\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\theta_{i}=\boldsymbol{x}_{i} \boldsymbol{\beta}=\sum_{j=1}^{p} x_{i j} \beta_{j} . \tag{21}
\end{equation*}
$$

Combining (20) and (21), we find that component j of the score function is

$$
\begin{aligned}
u_{j}(\boldsymbol{\beta}) & =\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{j}} \\
& =\sum_{i=1}^{n} \frac{\partial \log f\left(y_{i}\right)}{\partial \beta_{i}} \\
& =\sum_{i=1}^{n} \frac{\partial \log f\left(y_{i}\right)}{\partial \theta_{j}} \cdot \frac{\partial \theta_{i}}{\partial \beta_{j}} \\
& =\sum_{i=1}^{n} n_{i}\left(y_{i}-\pi_{i}\right) x_{i j} .
\end{aligned}
$$

Similarly, component (j, k) of the Hessian matrix is

$$
\begin{align*}
H_{j k}(\boldsymbol{\beta}) & =-\frac{\partial^{2} L(\boldsymbol{\beta})}{\partial \beta_{j} \partial \beta_{k}} \\
& =\sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} \log f\left(y_{i}\right)}{\partial \beta_{j} \partial \beta_{k}} \tag{22}\\
& =\sum_{i=1}^{n} \frac{\partial^{2} \log f\left(y_{i}\right)}{\partial^{2} \theta_{j}} \cdot \frac{\partial \theta_{i}}{\partial \beta_{j}} \cdot \frac{\partial \theta_{i}}{\partial \beta_{k}} \\
& =-\sum_{i=1}^{n} n_{i} \pi_{i}\left(1-\pi_{i}\right) x_{i j} x_{i k} .
\end{align*}
$$

Since the components of the Hessian matrix do not depend on data Y_{1}, \ldots, Y_{n}, they equal their expected values. From (22) we deduce that the components of the Fisher information matrix are

$$
\begin{aligned}
J_{j k}(\boldsymbol{\beta}) & =-E\left[H_{j k}(\boldsymbol{\beta})\right] \\
& =-H_{j k}(\boldsymbol{\beta}) \\
& =\sum_{i=1}^{n} n_{i} \pi_{i}\left(1-\pi_{i}\right) x_{i j} x_{i k} .
\end{aligned}
$$

