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Problem 1

a. Under binomial rows sampling we have that

N00 ∼ Bin(7, π0),
N10 ∼ Bin(8, π1)

are independent and binomially distributed. Therefore the likelihood l(π0, π1) is
given by the joint distribution of N01 and N11, i.e.

l(π0, π1) = P (N00 = 5, N10 = 2)

=
(

7
5

)
π5

0(1− π0)2 ·
(

8
2

)
π2

1(1− π1)6

= 588 · π5
0(1− π0)2π2

1(1− π1)6.

(1)

b. The null hypothesis and the alternative hypothesis correspond to

H0 : π0 = π1,
Ha : π0 > π1,

(2)

respectively. Introducing the odds ratio

θ =
π0/(1− π0)

π1/(1− π1)
, (3)

we find that (2) is equivalent to

H0 : θ = 1,
Ha : θ > 1.

c. Let nij be the observed cell counts. If we condition on the two row sums ni+ and
the two column sums n+j, then N00 has a hypergeometric distribution under H0,
i.e.

PH0(N00 = k|N0+ = 7, N1+ = 8, N+0 = 7, N+1 = 8)

=
(

7
k

)(
8

7−k

)
/
(

15
7

) (4)

for 0 ≤ k ≤ 7.
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The null hypothesis is rejected for large values of N00, since then it is more likely
that Ha holds. Denote the conditioning above by three dots (. . .). Since n00 = 5,
we find that

P -value = PH0(N11 = 5| . . .) + PH0(N00 = 6| . . .) + PH0(N00 = 7| . . .)
=

(
7
5

)(
8
2

)
/
(

15
7

)
+
(

7
6

)(
8
1

)
/
(

15
7

)
+
(

7
7

)(
8
0

)
/
(

15
7

)
= (21 · 28 + 7 · 8 + 1 · 1) /6435
= 645/6435
= 0.100.

Hence we cannot reject the null hypothesis, that the lady guesses at random, at
level 5%.

d. Starting with the joint distribution of N00 and N10, as in (1), we condition on the
columns sums as well. Since we already condition on row sums in (1), and since
N+1 = 15−N+0, we only need to write out N+0 in the conditioning. This gives

P (N00 = k|N+0 = 7) = P (N00 = k,N10 = 7− k)/P (N+0 = 7)
∝ P (N00 = k,N10 = 7− k)

=
(

7
k

)
πk0(1− π0)7−k ·

(
8

7−k

)
π7−k

1 (1− π1)8−(7−k)

∝
(

7
k

)(
8

7−k

)
θk,

(5)

for k = 0, 1, . . . , 7, where the odds ratio (3) was used in the fourth step. Expressions
to the right and left of a proportionality sign ∝ in (5) differ by a multiplicative
constant, not depending on k. The proportionality constant of the last step is
chosen so that all probabilities sum to one. This gives a non-central hypergeometric
distribution

P (N00 = k|N+0 = 7) =

(
7
k

)(
8

7−k

)
θk∑7

l=0

(
7
l

)(
8

7−l

)
θl
,

for 0 ≤ k ≤ 7. The special case θ = 1 is identical to the hyptergeometric distribution
(4).

Problem 2

a. Because of independent binomial rows sampling, the log likelihood of the dataset is

L(π,∆) = log
(
n0+

n01

)
+ n00 log(1− π −∆) + n01 log(π + ∆)

+ log
(
n1+

n11

)
+ n10 log(1− π) + n11 log(π),

(6)

with n00 = 2350, n01 = 42, n10 = 2417, and n11 = 53.

b. Inserting the numbers of the table into the definitions of ∆̂ and π̂, we find that

∆̂ = 42/2392− 53/2470 = 0.00390,
π̂ = 95/4862 = 0.0195.
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This gives a score statistic

zS =
0.00390√

( 1
2392

+ 1
2470

) · 0.0195(1− 0.0195)
= −0.983.

Since zS > −1.645 we conclude that H0 cannot be rejected at signficance level 5%.

c. By differentiating (6) with respect to π and ∆, we find that

uπ(π,∆) = n01/(π + ∆)− n00/(1− π −∆) + n11/π − n10/(1− π),
u∆(π,∆) = n01/(π + ∆)− n00/(1− π −∆).

(7)

d. We start by finding the elements of the Hessian matrix H(π,∆). That is, we
differentiate (7) with respect to π and ∆, and obtain

Hππ(π,∆) = ∂uπ(π,∆)/∂π
= −n01/(π + ∆)2 − n00/(1− π −∆)2

−n11/π
2 − n10/(1− π)2,

Hπ∆(π,∆) = ∂uπ(π,∆)/∂∆
= −n01/(π + ∆)2 − n00/(1− π −∆)2,

H∆∆(π,∆) = ∂u∆(π,∆)/∂∆
= −n01/(π + ∆)2 − n00/(1− π −∆)2.

(8)

Since the rows of the table have independent binomial distributions, it follows that
the expected cell counts are E(N00) = n0+(1 − π − ∆), E(N01) = n0+(π + ∆),
E(N10) = n1+(1 − π), and E(N11) = n1+π. Inserting these expectations into (8),
and changing sign, we find that the elements of the Fisher information matrix are
given by

Jππ(π,∆) = −E[Hππ(π,∆)] = n0+/[(π + ∆)(1− π −∆)] + n1+/[π(1− π)],
Jπ∆(π,∆) = −E[Hπ∆(π,∆)] = n0+/[(π + ∆)(1− π −∆)],
J∆∆(π,∆) = −E[H∆∆(π,∆)] = n0+/[(π + ∆)(1− π −∆)].

(9)

e. It is convenient to introduce π̂0 = n01/n0+ and π̂ = π̂(0) = n+1/n. In view of (7),
the numerator of the score test is

u(π̂, 0) = n01/π̂ − n00/(1− π̂)
= n0+[π̂0/π̂ − (1− π̂0)/(1− π̂)]
= n0+(π̂0 − π̂)/[π̂(1− π̂)]

= n0+n1+∆̂/[nπ̂(1− π̂)],

(10)

where in the last step we used that π̂0− π̂ = (n1+/n)∆̂. On the other hand, making
use of (9) and the hint, we find that

Var[u(π̂, 0)] = J∆∆(π̂, 0)− Jπ∆(π̂, 0)2/Jππ(π̂, 0)
= n0+/[π̂(1− π̂)]− {n0+/[π̂(1− π̂)]}2/{n/[π̂(1− π̂)]}
= n0+n1+/[nπ̂(1− π̂)].

(11)
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Finally, by taking the ratio of (10) and the square root of (11), we obtain the sought
for expression

zS =
∆̂√

n
n0+n1+

π̂(1− π̂)
=

∆̂√
( 1
n0+

+ 1
n1+

)π̂(1− π̂)

of the score statistic.

Problem 3

a. The loglinear parametrization of (XZ, Y Z) is

µijk = exp(λ+ λXi + λYj + λZk + λXZik + λY Zjk ) (12)

for 0 ≤ i, j, k ≤ 1. Assume that X = 0, Y = 0 and Z = 0 are chosen as baseline
levels. Then those loglinear parameters are put to zero for which at least one index
i, j or k equals 0. The remaining parameters are

β = (λ, λX1 , λ
Y
1 , λ

Z
1 , λ

XZ
11 , λY Z11 ). (13)

b. It follows from (12) that
µijk = AkBikCjk, (14)

with Ak = exp(λ + λZk ), Bik = exp(λXi + λXZik ) and Cjk = exp(λYj + λY Zjk ). Then,
summing over one of i or j, or over both indeces simultaneously in (14), we find
that

µi+k = AkBikC+k,
µ+jk = AkB+kCjk,
µ++k = AkB+kC+k.

Consequently,

µi+kµ+jk

µ++k

=
AkBikC+k · AkB+kCjk

AkB+kC+k

= AkBikCjk = µijk.

Alternatively, we may work directly with the cell probabilities πijk = µijk/µ+++.
Since X and Y are conditionally independent given Z for model (XZ, Y Z), it follows
that

πijk = π++kπij|k = π++kπi+|kπ+j|k = π++k ·
πi+k
π++k

· π+jk

π++k

=
πi+kπ+jk

π++k

,

and hence

µijk = µ+++πijk = µ+++ ·
µi+k

µ+++
· µ+jk

µ+++

µ++k

µ+++

=
µi+kµ+jk

µ++k

.

c. The maximum likelihood estimates

µ̂ijk =
ni+kn+jk

n++k
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of the expected cell counts are obtained by replacing µi+k, µ+jk and µ++k by esti-
mates ni+k, n+jk and n++k respecitvely. From the given marginals of the two partial
tables we can read off all ni+k, n+jk and n++k. Applying this for i = j = k = 1, we
find that

µ̂111 =
n1+1n+11

n++1

=
49 · 51

98
= 25.5,

which agrees with the value in cell (i, j, k) = (1, 1, 1), in the rightmost partial table
of Appendix B.

d. The chisquare goodness-of-fit statistic for testing (XZ, Y Z), against the saturated
model (XY Z), is

X2 =
∑
ijk(nijk − µ̂ijk)2/µ̂ijk

= (841− 838.2)2/838.2 + . . .+ (29− 25.5)2/25.5
= 9.36
> χ2

2(0.05) = 5.99,

where in the last step we used that df = 8 − 6 = 2, since the saturated model has
2 × 2 × 2 = 8 parameters, whereas the conditional independence model (XZ, Y Z)
has 6 parameters according to (13). Therefore we reject conditional independence
between X and Y given Z at level 5%. This suggests there might be other common
risk factors for mothers and children.

e. From the two partial tables we obtain the following estimated conditional odds
ratios:

θ̂XY (0) = (841 · 4)/(27 · 30) = 4.153,

θ̂XY (1) = (27 · 29)/(22 · 20) = 1.779.

Since θ̂XY (0) and θ̂XY (1) are both larger than 1, this indicates other possible com-
mon (genetic or shared environmental) risk factors, whereas model (XY, Y Z) has
θXY(0) = θXY(1) = 1. Since θ̂XY (0) is larger than θ̂XY (1), this indicates that there is

no homogeneous association θXY(0) = θXY(1) between X and Y given Z, as for model
(XZ, Y Z). It rather indicates that there is not only a second order association term
between X and Y , but also a third order association term between X, Y and Z.

Problem 4

a. The loglinear parametrization for (XY,XZ, Y Z) requires addition of anXY -interaction
term compared to (12). This gives

µijk = exp(λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk ). (15)

b. Let πijk = µijk/µ+++ = P (X = i, Y = j, Z = k) be the cell probabilities, and
πi+k = P (X = i, Z = k) the corresponding marignal probability for X and Z..
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Using (15) we find that

logit[P (Y = 1|X = i, Z = k)] = log[P (Y = 1|X = i, Z = k)/P (Y = 0|X = i, Z = k)]
= log[(πi1k/πi+k)/(πi0k/πi+k)]
= log(πi1k/πi0k)
= log(µi1k/µi0k)
= (λ+ λXi + λY1 + λZk + λXYi1 + λXZik + λY Z1k )
− (λ+ λXi + λY0 + λZk + λXYi0 + λXZik + λY Z0k )
= α + βXi + βZk ,

where in the last step we used that

α = λY1 − λY0 ,
βXi = λXYi1 − λXYi0 ,
βZk = λY Z1k − λY Z0k .

If X = 0 and Z = 0 are chosen as baseline levels, then any loglinear parameter with
i = 0 or k = 0 among it indeces is zero, which implies βX0 = βZ0 = 0. The only
remaining parameters are (α, βX1 , β

Z
1 ).

c. Since there is no third order interaction XY Z in the model, the conditional odds
ratio between X and Y does not depend on the level k of the conditioning variable
Z. We find that

log(θXY (k)) = logit[P (Y = 1|X = 1, Z = k)]− logit[P (Y = 1|X = 0, Z = k)]
= α + βX1 + βZk − (α + βX0 + βZk )
= βX1 − βX0
= βX1 .

A Wald type approximate 95% confidence interval for log(θXY (k)) is

(β̂X1 − 1.96
√

V̂ar(β̂X1 ), β̂X1 + 1.96
√

V̂ar(β̂X1 ))

= (0.8347− 1.96
√

0.1255, 0.8347 + 1.96
√

0.1255)
= (0.1404, 1.5290),

and the one for θXY (k) is

I = (exp(0.1404), exp(1.5290)) = (1.15, 4.61).

Since 1 /∈ I, this indicates (weakly) that there are additional common risk factors for
the mother and child apart from Z. (Notice however, from the solution of Problem
3e), that a third order interaction between X, Y , and Z should possibly be included
in the model as well.)

d. Let π(i, k) = P (Y = 1|X = i, Z = k). Our goal is to find a confidence interval for
π(0, 1). We will apply the delta method, based on the logit transformation. Recall
from Problem 4b) that

logit[π(0, 1)] = logit[P (Y = 1|X = 0, Z = 1)] = α + βZ1 .
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In order to find a confidence interval for logit[π(0, 1)], we notice that the standard
error is

SE =
√

V̂ar(α̂ + β̂Z1 )

=
√

V̂ar(α̂) + 2Ĉov(α̂, β̂Z1 ) + V̂ar(β̂Z1 )
=
√

0.0342− 2 · 0.0295 + 0.0977

=
√

0.0792
= 0.27.

This gives a Wald type 95% confidence interval

(α̂ + β̂Z1 − 1.96 · SE, α̂ + β̂Z1 + 1.96 · SE)
= (−3.3818 + 3.0497− 1.96 · 0.27,−3.3818 + 3.0497 + 1.96 · 0.27)
(−0.861, 0.197)

for logit[π(0, 1)], which we transform to a confidence interval(
exp(−0.861)

1 + exp(−0.861)
,

exp(0.197)

1 + exp(0.197)

)
= (0.297, 0.549)

for π(0, 1).

Problem 5

a. By differentiating the density/probability function formula for the exponential dis-
persion family (EDF) twice with respect to the natural parameter θi of observation
i, we find that the score function and Hessian of this observation are

ui(y) =
∂ log f(y; θ, ωi, φ)

∂θi
=
ωi(y − b′(θi))

φ
(16)

and

Hi(y) =
ui(y)

∂θi
= −ωib

′′(θi)

φ
(17)

respectively.

b. Since nYi ∼ Bin(ni, πi), we have that

P (Yi = y) = P (niYi = niy)

=
(
ni

niy

)
πniy(1− π)ni−niy

=
(
ni

niy

)
[(πi/(1− πi)]niy(1− πi)ni

= exp
{

[y log(πi/1− πi)− log(1− π)−1]/(1/ni) + log(
(
ni

niy

)
)
}
.

This corresponds to an EDF with

θi = log[πi/(1− πi)],
ωi = ni,
φ = 1,

b(θi) = log[1/(1− πi)] = log(1 + eθi),

c(y, φ) = log(
(
ni

niy

)
).

(18)
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From this it follows that

b′(θi) = eθi/(1 + eθi) = πi,
b′′(θi) = eθi/(1 + eθi)2 = πi(1− πi).

(19)

Making use of (16)-(17) and (18)-(19), we find that

ui = ni(y − πi)
Hi = −niπi(1− πi).

(20)

c. Recall that E(Yi|xi) = πi and that the natural parameter is θi. Since a canonoical
link function g is used, it follows from the first equation of (18) that

g(πi) = log(
πi

1− πi
) = θi = xiβ =

p∑
j=1

xijβj. (21)

Combining (20) and (21), we find that component j of the score function is

uj(β) = ∂L(β)
∂βj

=
∑n
i=1

∂ log f(yi)
∂βj

=
∑n
i=1

∂ log f(yi)
∂θj

· ∂θi
∂βj

=
∑n
i=1 ni(yi − πi)xij.

Similarly, component (j, k) of the Hessian matrix is

Hjk(β) = − ∂2L(β)
∂βj∂βk

=
∑n
i=1

∑n
i=1

∂2 log f(yi)
∂βj∂βk

=
∑n
i=1

∂2 log f(yi)
∂2θj

· ∂θi
∂βj
· ∂θi
∂βk

= −∑n
i=1 niπi(1− πi)xijxik.

(22)

Since the components of the Hessian matrix do not depend on data Y1, . . . , Yn, they
equal their expected values. From (22) we deduce that the components of the Fisher
information matrix are

Jjk(β) = −E[Hjk(β)]
= −Hjk(β)
=

∑n
i=1 niπi(1− πi)xijxik.

8


