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1. Solution:

(a) Informally the following function pd

pd(0) = 0

pd(x+ 1) = x

is defined by primitive recursion. It is immediate that pd(0) = 0 and pd(x) = x− 1
if x > 0.

(b) The definition of −̇ : N2 → N is given by the following informal application of the
primitive recursive scheme

x −̇ 0 = x

x −̇ (y + 1) = pd(x −̇ y)

Thus x −̇ y = pd(· · · pd(x) · · · ) = pdy(x). If x ≥ y, then x = u+ y, for some u, so

x −̇ y = pdy(x) = pdy(u+ y) = u = x− y,

and if x ≤ y, then y = u+ x, for some u, so

x −̇ y = pdy(x) = pdu+x(x) = pdu(0) = 0

• Remark. A completely formal definition of pd following Cori-Lascar (Ch 5.1) can be
given as

pd(0) = γ0()

pd(x+ 1) = P 2
1 (x,pd(x))

where γ0() is the 0-ary function with constant value 0. A formal definition of −̇ is

x −̇ 0 = P 1
1 (x)

x −̇ (y + 1) = P 3
3 (x, y, pd(x −̇ y))

2. Solution:

(a) The set E = {(x, y) ∈ N2 : φ1x = φ1y} is not recursive. Suppose it is recursive and
that χE : N2 → N is its recursive characteristic function. Let e be an index so that
φ1e is undefined for all inputs. Thus the set

C = {x ∈ N : φ1x = φ1e}
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is recursive, since its characteristic function satisfies χC(x) = χE(x, e). Now we can
see that C satisfies the conditions for Rice’s Theorem. It is a set of indexes satisfying
extensionality: if x ∈ C, and φ1x = φ1z, then z ∈ C. Moreover C 6= ∅, since e ∈ C.
Let f be an index so that φ1f is e.g. the function that is constant 0. Thus f /∈ C, so
C 6= N. Hence by Rice’s theorem, C is not recursive. A contradiction. Hence E can
not be recursive either.

(b) The set F = {x ∈ N : Wx is finite} is not recursive. This follows again by an
application of Rice’s theorem, noting that F is a non-trivial index set. In fact, the
indexes e and f from (a) above can be used to prove non-triviality: e ∈ F and
f ∈ N \ F .

(c) The set B = {(x, y, n) ∈ N3 : Turing machine with index x stops on input y at the
nth step } is recursive: Given (x, y, n) simulate the Turingmachine x with input y
up to the nth step. This can be done using a primitive recursive function in x, y, n.
Check whether the simulation has stopped before n step, then answer NO. If has
stopped at step n, answer YES, else answer NO. (Cf. the ST function (Chapter 5.3.4,
Cori-Lascar, vol. 2).)

3. Solution:

1. Cite for instance Definition 3.75 in Cori Lascar vol. 1

2. Consider the language Lord = {≤}. The same method as in Theorem 3.79 (Cori
Lascar vol. 1) can be used.

3. Let PO be the theory {∀x(x ≤ x),∀xy(x ≤ y ∧ y ≤ x ⇒ x = y),∀xyz(x ≤ y ∧ y ≤
z ⇒ x ≤ z)}. An Lord-structure A is a partial order if and only if A |= PO. Let
Fn be the sentence that states that there are at least n different elements. Then
PO ∪ {Fn : n ≥} axiomatizes infinite partial orders

4. Solution:
Let κ be a cardinal larger than max(Card(L),Card(M)). Apply the Upward Skolem-

Löwenheim Theorem (8.15 in Cori-Lascar vol. 2) to obtain an L-structure N which is an
elementary extension ofM and whose cardinality is κ. Since κ > Card(M), N cannot be
isomorphic toM. But sinceM≺ N , it holds thatM≡ N .

5. Solution:
Statements of the three equivalent forms of the axiom of choice can be found in Theorem

7.41 of Cori-Lascar vol. 2.
A suitable version for proving the order extension result is Zorn’s Lemma. Solution:

Let P ⊆ S×S a partial order on S. Form the set of all partial orders (p.o.) on S extending
P :

R = {Q ⊆ S × S : Q p.o. on S and P ⊆ Q}

This set is partially ordered by ⊆. It is straightforward to verify that (R,⊆) is an inductive
set. By Zorn’s Lemma (R,⊆) has a maximal element L.

Next show that L is a total order on S. Suppose L is not a total order. Then there
exists x, y ∈ S such that (x, y) /∈ L and (y, x) /∈ L. Next define

L∗ = L ∪ {(u, v) ∈ S × S : u ≤ x, y ≤ v}.
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Then reasoning by cases shows that L∗ is a partial order. Clearly L∗ ⊇ L and (x, y) ∈ L∗.
Hence L∗ is properly including L contradictng that L was a maximal partial order in R.
We conclude that L must be a total order.

6. Solution:

1. |S1| = |RQ| = |(2N)Q| = |(2N)N| = |2N×N| = |2N| = 2ℵ0

2. If f, g : R→ R are two continuous functions such that f|Q = g|Q, then by continuity
f = g. Thus f 7→ f|Q defines an injective function S2 → S1. Hence |S2| ≤ 2ℵ0 .
Conversely, there is an injective map R → S2, taking a real number to a constant
map. Hence 2ℵ0 = |R| ≤ |S2|. Thus |S2| = 2ℵ0 .

3. S3 = {f : N → N | f is increasing}. Clearly S3 ⊆ NN, so |S3| ≤ ℵ0ℵ0 = 2ℵ0 .
Conversely, if h : N → {0, 1}, then fh(n) = h(0) + · · · + h(n) defines an increasing
function fh ∈ S3. Now h 7→ fh defines an injective function {0, 1}N → S3. Thus also
2ℵ0 ≤ |S3|. Hence |S3| = 2ℵ0 .

4. By a non-decreasing function f : N→ N is meant a function which has the property
that f(n) ≥ f(n + 1) for all n. Since values are taken in N, which is well ordered,
there must exist a k such that f(k) = f(k + n) for all n > 1. Thus a function
f ∈ S4 is determined by a sequence f(0), . . . , f(k), where k is smallest such that
f(k) = f(k + n) for all n > 1. It follows that

|S4| = | ∪n≥1 Nk| = |N| = ℵ0.

7. Solution:
Gödel’s First Incompleteness Theorem is stated in 6.30 of Cori-Lascar vol 2. We use it

to prove that the theory
T = PA ∪ {Fn : n > 2}

is incomplete. We need only to note that

(a) it includes the theory PA0,

(b) it is consistent, since N |= PA, and by Wiles’ theorem N |= Fn for each n > 2

(c) and T is recursive since PA is recursive and there is a (primitive) recursive function
which can decide whether a formula G satisfies #Fn = #G for some n > 2.

8. Solution:

1. Let λ(u) be the Lring-formula

∃x ∃y ∃z ∃w (u = x2 + y2 + z2 + w2).

By Lagrange’s theorem, for all u ∈ Z, Z |= λ(u) if, and only if, u ≥ 0. So N is defined
by φ(u) in Z.

2. We know by Gödel’s theorem (6.28 Cori-Lascar vol 2) that

Th(N ) = {#F : Z |= F and F is a closed Lring-formula}
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is not recursive, since it is consistent and contains PA0 (P0).
With the help of (a) we can translate first order decision problems of Z to a decision
problems of N by restricting quantifiers to N.
Define for each Lring-formula F , an Lring-formula F λ (F relativized to λ):

• F λ = F if F atomic

• (F ∧G)λ = F λ ∧Gλ

• (F ∨G)λ = F λ ∨Gλ

• (F ⇒ G)λ = F λ ⇒ Gλ

• (∀xF )λ = ∀x(λ(x)⇒ F λ)

• (∃xF )λ = ∃x(λ(x) ∧ F λ)

One can show by induction on F that for all a1, . . . , an ∈ N,

Z |= F λ[a1, . . . , an] iff N |= F [a1, . . . , an],

and in particular for closed F ,

Z |= F λ iff N |= F.

It is relative straightforward to see that there is a (primitive) recursive function
f : N→ N, acting on the Gödel coding so that f(#F ) = #(F λ) for Lring-formula F .

Thus #F ∈ Th(N ) iff f(#F ) = #(F λ) ∈ Th(Z). Therefore if Th(Z) is recursive,
then so is Th(N ). A contradiction. Hence Th(Z) is not recursive.

—————
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