STOCKHOLMS UNIVERSITET Matematiska institutionen Erik Palmgren Jacopo Emmenegger

Solutions to Written Exam Logic II Fall term 2018 2019-01-16

Solutions to written exam Logic II, 2019-01-16

1. Solution:

(a) Informally the following function pd

$$pd(0) = 0$$
$$pd(x+1) = x$$

is defined by primitive recursion. It is immediate that pd(0) = 0 and pd(x) = x - 1 if x > 0.

(b) The definition of $\dot{-}: \mathbb{N}^2 \to \mathbb{N}$ is given by the following informal application of the primitive recursive scheme

$$\begin{array}{rcl} x \stackrel{\cdot}{-} 0 &=& x \\ x \stackrel{\cdot}{-} (y+1) &=& \mathrm{pd}(x \stackrel{\cdot}{-} y) \end{array}$$

Thus $\dot{x-y} = \mathrm{pd}(\cdots \mathrm{pd}(x) \cdots) = \mathrm{pd}^y(x)$. If $x \ge y$, then x = u + y, for some u, so

$$\dot{x-y} = \mathrm{pd}^y(x) = \mathrm{pd}^y(u+y) = u = x-y,$$

and if $x \leq y$, then y = u + x, for some u, so

$$\dot{x-y} = \mathrm{pd}^y(x) = \mathrm{pd}^{u+x}(x) = \mathrm{pd}^u(0) = 0$$

• Remark. A completely formal definition of pd following Cori-Lascar (Ch 5.1) can be given as

$$pd(0) = \gamma_0()$$

$$pd(x+1) = P_1^2(x, pd(x))$$

where $\gamma_0()$ is the 0-ary function with constant value 0. A formal definition of - is

$$\begin{array}{rcl} x \stackrel{-}{-} 0 &=& P_1^1(x) \\ x \stackrel{-}{-} (y+1) &=& P_3^3(x,y,\mathrm{pd}(x \stackrel{-}{-} y)) \end{array}$$

2. Solution:

(a) The set $E = \{(x, y) \in \mathbb{N}^2 : \phi_x^1 = \phi_y^1\}$ is not recursive. Suppose it is recursive and that $\chi_E : \mathbb{N}^2 \to \mathbb{N}$ is its recursive characteristic function. Let e be an index so that ϕ_e^1 is undefined for all inputs. Thus the set

$$\mathcal{C} = \{ x \in \mathbb{N} : \phi_x^1 = \phi_e^1 \}$$

is recursive, since its characteristic function satisfies $\chi_{\mathcal{C}}(x) = \chi_E(x, e)$. Now we can see that \mathcal{C} satisfies the conditions for Rice's Theorem. It is a set of indexes satisfying extensionality: if $x \in \mathcal{C}$, and $\phi_x^1 = \phi_z^1$, then $z \in \mathcal{C}$. Moreover $\mathcal{C} \neq \emptyset$, since $e \in \mathcal{C}$. Let f be an index so that ϕ_f^1 is e.g. the function that is constant 0. Thus $f \notin \mathcal{C}$, so $\mathcal{C} \neq \mathbb{N}$. Hence by Rice's theorem, \mathcal{C} is not recursive. A contradiction. Hence E can not be recursive either.

- (b) The set $F = \{x \in \mathbb{N} : W_x \text{ is finite}\}$ is not recursive. This follows again by an application of Rice's theorem, noting that F is a non-trivial index set. In fact, the indexes e and f from (a) above can be used to prove non-triviality: $e \in F$ and $f \in \mathbb{N} \setminus F$.
- (c) The set $B = \{(x, y, n) \in \mathbb{N}^3 :$ Turing machine with index x stops on input y at the nth step $\}$ is recursive: Given (x, y, n) simulate the Turingmachine x with input y up to the nth step. This can be done using a primitive recursive function in x, y, n. Check whether the simulation has stopped before n step, then answer NO. If has stopped at step n, answer YES, else answer NO. (Cf. the ST function (Chapter 5.3.4, Cori-Lascar, vol. 2).)

3. Solution:

- 1. Cite for instance Definition 3.75 in Cori Lascar vol. 1
- 2. Consider the language $L_{\text{ord}} = \{\leq\}$. The same method as in Theorem 3.79 (Cori Lascar vol. 1) can be used.
- 3. Let PO be the theory $\{\forall x(x \leq x), \forall xy(x \leq y \land y \leq x \Rightarrow x = y), \forall xyz(x \leq y \land y \leq z \Rightarrow x \leq z)\}$. An L_{ord} -structure \mathcal{A} is a partial order if and only if $\mathcal{A} \models \text{PO}$. Let F_n be the sentence that states that there are at least n different elements. Then $\text{PO} \cup \{F_n : n \geq\}$ axiomatizes infinite partial orders

4. Solution:

Let κ be a cardinal larger than max(Card(L), Card(\mathcal{M})). Apply the Upward Skolem-Löwenheim Theorem (8.15 in Cori-Lascar vol. 2) to obtain an L-structure \mathcal{N} which is an elementary extension of \mathcal{M} and whose cardinality is κ . Since $\kappa > \text{Card}(\mathcal{M})$, \mathcal{N} cannot be isomorphic to \mathcal{M} . But since $\mathcal{M} \prec \mathcal{N}$, it holds that $\mathcal{M} \equiv \mathcal{N}$.

5. Solution:

Statements of the three equivalent forms of the axiom of choice can be found in Theorem 7.41 of Cori-Lascar vol. 2.

A suitable version for proving the order extension result is Zorn's Lemma. Solution: Let $P \subseteq S \times S$ a partial order on S. Form the set of all partial orders (p.o.) on S extending P:

$$R = \{ Q \subseteq S \times S : Q \text{ p.o. on } S \text{ and } P \subseteq Q \}$$

This set is partially ordered by \subseteq . It is straightforward to verify that (R, \subseteq) is an inductive set. By Zorn's Lemma (R, \subseteq) has a maximal element L.

Next show that L is a total order on S. Suppose L is not a total order. Then there exists $x, y \in S$ such that $(x, y) \notin L$ and $(y, x) \notin L$. Next define

$$L^* = L \cup \{(u, v) \in S \times S : u \le x, y \le v\}.$$

Then reasoning by cases shows that L^* is a partial order. Clearly $L^* \supseteq L$ and $(x, y) \in L^*$. Hence L^* is properly including L contradicting that L was a maximal partial order in R. We conclude that L must be a total order.

- 6. Solution:
 - 1. $|S_1| = |\mathbb{R}^{\mathbb{Q}}| = |(2^{\mathbb{N}})^{\mathbb{Q}}| = |(2^{\mathbb{N}})^{\mathbb{N}}| = |2^{\mathbb{N} \times \mathbb{N}}| = |2^{\mathbb{N}}| = 2^{\aleph_0}$
 - 2. If $f, g: \mathbb{R} \to \mathbb{R}$ are two continuous functions such that $f_{|\mathbb{Q}} = g_{|\mathbb{Q}}$, then by continuity f = g. Thus $f \mapsto f_{|\mathbb{Q}}$ defines an injective function $S_2 \to S_1$. Hence $|S_2| \leq 2^{\aleph_0}$. Conversely, there is an injective map $\mathbb{R} \to S_2$, taking a real number to a constant map. Hence $2^{\aleph_0} = |\mathbb{R}| \leq |S_2|$. Thus $|S_2| = 2^{\aleph_0}$.
 - 3. $S_3 = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ is increasing}\}$. Clearly $S_3 \subseteq \mathbb{N}^{\mathbb{N}}$, so $|S_3| \leq \aleph_0^{\aleph_0} = 2^{\aleph_0}$. Conversely, if $h : \mathbb{N} \to \{0, 1\}$, then $f_h(n) = h(0) + \cdots + h(n)$ defines an increasing function $f_h \in S_3$. Now $h \mapsto f_h$ defines an injective function $\{0, 1\}^{\mathbb{N}} \to S_3$. Thus also $2^{\aleph_0} \leq |S_3|$. Hence $|S_3| = 2^{\aleph_0}$.
 - 4. By a non-decreasing function $f : \mathbb{N} \to \mathbb{N}$ is meant a function which has the property that $f(n) \ge f(n+1)$ for all n. Since values are taken in \mathbb{N} , which is well ordered, there must exist a k such that f(k) = f(k+n) for all n > 1. Thus a function $f \in S_4$ is determined by a sequence $f(0), \ldots, f(k)$, where k is smallest such that f(k) = f(k+n) for all n > 1. It follows that

$$|S_4| = |\cup_{n \ge 1} \mathbb{N}^k| = |\mathbb{N}| = \aleph_0.$$

7. Solution:

Gödel's First Incompleteness Theorem is stated in 6.30 of Cori-Lascar vol 2. We use it to prove that the theory

$$T = \mathrm{PA} \cup \{F_n : n > 2\}$$

is incomplete. We need only to note that

- (a) it includes the theory PA_0 ,
- (b) it is consistent, since $\mathbb{N} \models \mathrm{PA}$, and by Wiles' theorem $\mathbb{N} \models F_n$ for each n > 2
- (c) and T is recursive since PA is recursive and there is a (primitive) recursive function which can decide whether a formula G satisfies $\#F_n = \#G$ for some n > 2.

8. Solution:

1. Let $\lambda(u)$ be the L_{ring} -formula

$$\exists x \, \exists y \, \exists z \, \exists w \, (u = x^2 + y^2 + z^2 + w^2).$$

By Lagrange's theorem, for all $u \in \mathbb{Z}$, $\mathcal{Z} \models \lambda(u)$ if, and only if, $u \ge 0$. So \mathbb{N} is defined by $\phi(u)$ in \mathcal{Z} .

2. We know by Gödel's theorem (6.28 Cori-Lascar vol 2) that

 $Th(\mathcal{N}) = \{ \#F : \mathcal{Z} \models F \text{ and } F \text{ is a closed } L_{ring}\text{-formula} \}$

is not recursive, since it is consistent and contains PA_0 (\mathcal{P}_0).

With the help of (a) we can translate first order decision problems of \mathcal{Z} to a decision problems of \mathcal{N} by restricting quantifiers to \mathbb{N} .

Define for each L_{ring} -formula F, an L_{ring} -formula F^{λ} (F relativized to λ):

- $F^{\lambda} = F$ if F atomic
- $(F \wedge G)^{\lambda} = F^{\lambda} \wedge G^{\lambda}$
- $(F \lor G)^{\lambda} = F^{\lambda} \lor G^{\lambda}$
- $\bullet \ (F \Rightarrow G)^{\lambda} = F^{\lambda} \Rightarrow G^{\lambda}$
- $(\forall x F)^{\lambda} = \forall x (\lambda(x) \Rightarrow F^{\lambda})$
- $(\exists x F)^{\lambda} = \exists x (\lambda(x) \land F^{\lambda})$

One can show by induction on F that for all $a_1, \ldots, a_n \in \mathbb{N}$,

$$\mathcal{Z} \models F^{\lambda}[a_1, \dots, a_n] \text{ iff } \mathcal{N} \models F[a_1, \dots, a_n],$$

and in particular for closed F,

$$\mathcal{Z} \models F^{\lambda}$$
 iff $\mathcal{N} \models F$.

It is relative straightforward to see that there is a (primitive) recursive function $f: \mathbb{N} \to \mathbb{N}$, acting on the Gödel coding so that $f(\#F) = \#(F^{\lambda})$ for L_{ring} -formula F. Thus $\#F \in \text{Th}(\mathcal{N})$ iff $f(\#F) = \#(F^{\lambda}) \in \text{Th}(\mathcal{Z})$. Therefore if $\text{Th}(\mathcal{Z})$ is recursive, then so is $\text{Th}(\mathcal{N})$. A contradiction. Hence $\text{Th}(\mathcal{Z})$ is not recursive.