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1. Solution:
(a) Informally the following function pd
pd(0) =
pd(z+1) = =z

is defined by primitive recursion. It is immediate that pd(0) = 0 and pd(z) =z — 1
it > 0.

(b) The definition of — : N> — N is given by the following informal application of the
primitive recursive scheme

r—0 = x
r=(y+1) = pdlz—y)
Thus x —y = pd(---pd(z) - --) = pd¥(x). If z >y, then x = u + ¥, for some u, so
z-y=pd(z) =pd’(ut+y) =u=z—y,
and if x <y, then y = u + z, for some u, so

x—y=pd?(z) = pd""(z) = pd“(0) = 0

e Remark. A completely formal definition of pd following Cori-Lascar (Ch 5.1) can be
given as

pd(0) = ()
pd(z+1) = P(z,pd(z))

where vo() is the O-ary function with constant value 0. A formal definition of — is
r=0 = Pl
r=(y+1) = P,y pdl-y))
2. Solution:

(a) The set E = {(z,y) € N? : ¢} = ¢, } is not recursive. Suppose it is recursive and
that xg : N2> — N is its recursive characteristic function. Let e be an index so that
¢! is undefined for all inputs. Thus the set

C={zeN:¢l =0}



is recursive, since its characteristic function satisfies x¢(z) = xg(z,e). Now we can
see that C satisfies the conditions for Rice’s Theorem. It is a set of indexes satisfying
extensionality: if z € C, and ¢. = ¢!, then z € C. Moreover C # (), since e € C.
Let f be an index so that gﬁ} is e.g. the function that is constant 0. Thus f ¢ C, so
C # N. Hence by Rice’s theorem, C is not recursive. A contradiction. Hence E can
not be recursive either.

(b) The set FF = {x € N : W, is finite} is not recursive. This follows again by an
application of Rice’s theorem, noting that F' is a non-trivial index set. In fact, the
indexes e and f from (a) above can be used to prove non-triviality: e € F and
feN\F.

(c) The set B = {(zx,y,n) € N3 : Turing machine with index z stops on input y at the
nth step } is recursive: Given (x,y,n) simulate the Turingmachine z with input y
up to the nth step. This can be done using a primitive recursive function in x,y, n.
Check whether the simulation has stopped before n step, then answer NO. If has
stopped at step n, answer YES, else answer NO. (Cf. the ST function (Chapter 5.3.4,
Cori-Lascar, vol. 2).)

3. Solution:
1. Cite for instance Definition 3.75 in Cori Lascar vol. 1

2. Consider the language Loq = {<}. The same method as in Theorem 3.79 (Cori
Lascar vol. 1) can be used.

3. Let PO be the theory {Vz(z < z),Vzy(z < yAy <z =z =1y),Vaeyz(zr < yAy <
z =z < z)}. An Lgg-structure A is a partial order if and only if A = PO. Let
F,, be the sentence that states that there are at least n different elements. Then
PO U{F,, : n >} axiomatizes infinite partial orders

4. Solution:
Let x be a cardinal larger than max(Card(L),Card(M)). Apply the Upward Skolem-
Lowenheim Theorem (8.15 in Cori-Lascar vol. 2) to obtain an L-structure N which is an

elementary extension of M and whose cardinality is . Since x > Card(M), N cannot be
isomorphic to M. But since M < N, it holds that M = N.

5. Solution:

Statements of the three equivalent forms of the axiom of choice can be found in Theorem
7.41 of Cori-Lascar vol. 2.

A suitable version for proving the order extension result is Zorn’s Lemma. Solution:
Let P C Sx S a partial order on S. Form the set of all partial orders (p.o.) on S extending
P:

R={QCSxS: Qp.o. onSandPCQ}
This set is partially ordered by C. It is straightforward to verify that (R, C) is an inductive
set. By Zorn’s Lemma (R, C) has a maximal element L.

Next show that L is a total order on S. Suppose L is not a total order. Then there
exists x,y € S such that (z,y) ¢ L and (y,x) ¢ L. Next define

L*=LU{(u,v) € SxS:u<z,y<uv}



Then reasoning by cases shows that L* is a partial order. Clearly L* O L and (z,y) € L*.
Hence L* is properly including L contradictng that L was a maximal partial order in R.
We conclude that L must be a total order.

6. Solution:

L [81] = R = [(2%)9] = |@")N] = [28N] = |28] = 2%

2. If f,g: R — R are two continuous functions such that fig = g|g, then by continuity
f =g Thus f — fg defines an injective function Sz — S1. Hence [S3| < 2o,
Conversely, there is an injective map R — S5, taking a real number to a constant
map. Hence 2% = |R| < |Sy|. Thus |Sy| = 2%o.

3. 83 = {f : N = N | fisincreasing}. Clearly S3 C NV, so |S3] < R0 = 2%,
Conversely, if h : N — {0,1}, then fs(n) = h(0) 4 --- + h(n) defines an increasing
function f;, € S3. Now h + f;, defines an injective function {0, 1} — S3. Thus also
2% < |S3]. Hence |S3] = 2%,

4. By a non-decreasing function f : N — N is meant a function which has the property
that f(n) > f(n+ 1) for all n. Since values are taken in N, which is well ordered,
there must exist a k such that f(k) = f(k + n) for all n > 1. Thus a function
f € Sy is determined by a sequence f(0),..., f(k), where k is smallest such that
f(k) = f(k+mn) for all n > 1. It follows that

|S4] = | Unz1 N¥| = [N| = Ro.
7. Solution:

Godel’s First Incompleteness Theorem is stated in 6.30 of Cori-Lascar vol 2. We use it
to prove that the theory

T =PAU{F,:n>2}

is incomplete. We need only to note that

(a) it includes the theory PAy,

(b) it is consistent, since N = PA, and by Wiles’ theorem N |= F,, for each n > 2

(c) and T is recursive since PA is recursive and there is a (primitive) recursive function

which can decide whether a formula G satisfies #F,, = #G for some n > 2.

8. Solution:

1.

2.

Let A(u) be the Lyjng-formula
33y 3z Iw (u = 22 + y? + 22 + w?).

By Lagrange’s theorem, for all u € Z, Z |= A(u) if, and only if, u > 0. So N is defined
by ¢(u) in Z.

We know by Godel’s theorem (6.28 Cori-Lascar vol 2) that

Th(N) ={#F: Z | F and F is a closed Lying-formula}



is not recursive, since it is consistent and contains PAg (Py).

With the help of (a) we can translate first order decision problems of Z to a decision
problems of N by restricting quantifiers to N.

Define for each Lyjyg-formula F', an Lyjye-formula F° A (F relativized to \):

e F* = [ if F atomic

e (FAGY=F A\G*
FVG)>=F*vG?
F=G)Y=F= g
Vo F)» = Vo(\(z) = F)
3z F)» = 3z (\(z) A F)

~—~ S —~

°
One can show by induction on F' that for all aq,...,a, € N,
Z = FMay,... a0 if N = Flag, ..., an],
and in particular for closed F,
ZEF N EF

It is relative straightforward to see that there is a (primitive) recursive function
f: N — N, acting on the Gédel coding so that f(#F) = #(F*) for Lying-formula F.
Thus #F € Th(N) iff f(#F) = #(F*) € Th(Z). Therefore if Th(Z) is recursive,
then so is Th(N). A contradiction. Hence Th(Z) is not recursive.



