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1. Solution:
Observe that in the empty language an elementary embedding between two infinite
structures is the same as an injective function.

(a) An example is the inclusion of Q into R in the empty language. A more exotic
example can be found using the upward Löwenheim-Skolem Theorem.

(b) As mentioned before, any elementary embedding is injective. Hence if f :
M → N is an elementary embedding, |M | ≤ |N |, so this case is impossible.

(c) Taking the empty language again, the inclusion of Z into Q suffices. A more
exotic example is the subset inclusion of 〈Q \ {0}, <〉 into 〈Q, <〉 in the lan-
guage L = {<}.

2. Solution:

(a) |R<ω| = | ∪n<ω Rn| = sup(sup{|Rn| | n < ω}, |ω|) = |R|.
(b) Consider the map ϕ : P ((0, 1))→ P (R) given by A 7→ A∪(1,∞). It is injective

and has the property that for all A ∈ P ((0, 1)), |ϕ(A)| = |ϕ(A)| = |R|, since
one contains (1,∞), while the other contains (−∞, 0). For any A ∈ P ((0, 1)),
let θA be a bijection from ϕ(A) → ϕ(A). Now define a map f : P ((0, 1)) →
Bij(R,R) as by sending A to the function g : R→ R given by swapping ϕ(A)
with ϕ(A), i.e. g(x) = θA(x) if x ∈ ϕ(A) and g(x) = θ−1A (x) if x ∈ ϕ(A). This
shows that |R| < |P (R)| = |P ((0, 1))| ≤ |Bij(R,R)|.

(c) A monotone function is a function that either never increases are never de-
creases. Given any subset of N, we can define a monotone increasing function
that enumerates its elements (if the subset is finite, we can remain constant
once we have hit the last element). This means that Mon(N,N) is bounded
from below by 2ℵ0 . Mon(N,N) is also bounded from above by the set of all
function from N to N, which has cardinality |NN| = |2N| = 2ℵ0 . We conclude
that |Mon(N,N)| = 2ℵ0 = |R|.

3. Solution:

(a) Suppose that N |= ∃vDrv(#ϕ, v). Hence there exists a number n ∈ N such
that N |= Drv(#ϕ, n). By virtue of representability, n must be a code of a
derivation D whose conclusion is ϕ. We conclude that PA ` ϕ.

(b) Suppose that N 6|= Con(PA). Then N |= ∃vDrv(#⊥, v) and so by (a), PA `
⊥. But PA is consistent, thus we reach a contradiction. Hence N |= Con(PA).



(c) Consider the theory T := PA ∪ {Con(PA)}. It is consistent, because by (b)
we have a model N. It is also clearly recursively enumerable (as PA is) and
extends P0. Furthermore, we have T ` Con(PA).

4. Solution:
(=>) Let a be set whose elements are non-empty and pairwise disjoint. Consider
the family of maps (x)x∈A. By assumption, this is a family of non-empty sets, so
by AC we conclude that Πx∈ax = {f : a→ ∪x∈ax | f(x) ∈ x} is non-empty. Let f
be any such map. Define the set b := f(a)(= ran(f)). Then for any element x ∈ a,
we see that f(x) ∈ b ∩ x. Moreover, if y ∈ b ∩ x, we must have an x′ such that
y = f(x′). But then y ∈ x′, and since all elements of a are pairwise disjoint, we
must have x = x′. Hence b ∩ x = {f(x)}.
(<=) Let (ai)i∈I be a family of non-empty sets. Consider the set a := {{i} × ai |
i ∈ I}. All elements of a are non-empty and pairwise disjoint. Therefore there
exists a set b such that b ∩ ({i} × ai) is a singleton, for all i ∈ I. Because b might
contain some unwanted ‘noise’, we define b′ = {(i, x) ∈ b | x ∈ ai}. Then we see
that b′ ⊆ (I × (∪i∈Iai)) and, for any i, there exists one and only one element in b′

such that its first projection is i. Moreover, the second projection of this unique
element will be in ai. We conclude that b′ defines a function I → ∪i∈Iai such that
for all i ∈ I, b′(i) ∈ ai.

5. Solution:

(a) Composition of recursive function is recursive.

(b) Let T be any Turing machine with a states and b bands (b ≥ 1), and k any
number. Let S be the following Turing machine with a + k + 1 states and b
bands. It uses the first k − 1 states (including ei) to write down the input
k− 1 on the first band; on a fully blank position, these states will write down
a stroke on the first band, move to the right and increase the state by one or
ei 7→ e1. It uses ek to write a stroke on the first band, but stay there. If there
is already a stroke on the first band it will not change anything and move to
the left, remaining in the same state. If the machine is back at the starting
position, it changes to state ek+1. Then it will use remaining a states to work
as T , where ei will be replaced by ek+1. If we run this machine on empty input
it cannot become stuck as long while it is in its first k+1 states, hence it halts
if and only if T halts on input k and if either do, it will produce the same
output by construction.

(c) Let f : N → N be any recursive function. By (a), we know that g(n) =
f(2n + 1) + 1 is recursive. Let T be a Turing machine that computes g. Let
a be the number of states of T and b be the number of bands. Observe that
we can always add dummy states/bands so assume without loss of generality
that a = b. Because T computes g, it must have at least 1 band. Using (b)
with k = a we find a Turing machine S that has 2a + 1 states and a bands
such that S(0) = T (a), because T computes g, which is total. By construction
BB(2a+ 1) ≥ S(0) = g(a) = f(2a+ 1) + 1 > f(2a+ 1). We conclude that BB
cannot be recursive.



6. Solution:

(a) Consider the formula

Fn := ∀x1 . . . ∀xn(¬(xn ∼ x1) ∨ (
∨

1≤i<n

(¬(xi ∼ xi+1))).

Then M |= Fn if and only if M does not contain a cycle of length n. Consider
the theory T := {Fn | n ≥ 1}. We see that M |= T if and only if M is a
directed graph that does not contain cycles.

(b) Suppose that the class of directed graphs was axiomatisable by the theory
T ′, i.e. M |= T ′ iff M is a directed graph that contains at least one cycle.
Consider the theory T ′′ = T ′ ∪ T . Then T ′′ must be inconsistent, as a model
would have no cycles as well as at least one. However, any finite subset of
T ′′ is contained in the theory T ′ ∪ {Fn | n < k} for some k. This theory
is consistent, because we have a model with base set M := {1, 2, . . . , k} and
∼M := {(n,m) ⊆ M2 | (n = k ∧m = 1) ∨ (m = n + 1)}. This contradicts the
compactness theorem.

7. Solution:

(a) (=>) Suppose that x is a hc set. Because x ⊆ cl(x) we see that x must by
countable. Let t ∈ x. Observe that t ⊆ cl(x). Since cl(t) is the smallest
transitive set containing t, we must have cl(t) ⊆ cl(x). Hence t is also hc.
(<=) Suppose now that x is countable and all its elements are hc. Recall the
construction of cl(x) := ∪n∈ωxn where

x0 := x and xn+1 := xn ∪

(⋃
t∈xn

t

)
.

We prove by induction on n that for all n, xn is countable and all its elements
are hc. The base case is our initial assumption. Suppose now that xk is
countable and all its elements are hc. Then xk+1 is a union of a countable
set together with a countable union of sets all of which must be countable,
because of (=>). Hence xk+1 is countable. Any element s ∈ xk+1 is either in
xk and thus hc or is an element of some t ∈ xk and thus must be hc, again
because of (=>). Hence the statement indeed holds for all n by induction and
we conclude that cl(x) is countable as it is a countable union of countable sets.

(b) Define the following set

z := {A ∈ HC | ∀α ≤ ω1, A 6∈ Vα}.

Observe that if z = ∅, this implies that HC ⊆ Vω1 . Suppose that z is non-
empty. By the axiom of foundation we find a set A ∈ z such that A ∩ z = ∅.
In particular, A ∈ HC and ∀α ≤ ω1, A 6∈ Vα. Let B ∈ A. By (a), we know
that B ∈ HC and hence there must exist some ordinal αB ≤ ω1 such that
B ∈ VαB

. In fact, since Vω1 =
⋃
α<ω1

P (Vα) =
⋃
α<ω1

Vα we can see that we
can find αB < ω1. However, in (a) we found that A must be countable, so the
ordinal α :=

⋃
B∈A αB must be countable. We conclude that A ⊆ Vα, and thus

A ∈ Vα+1 and thus reach a contradiction.



(c) The axiom that does not hold in HC is the axiom of subsets. Observe that
ω ∈ HC as it is a countable transitive set. If the axiom of subsets would hold
in HC, there would be a set A ∈ HC such that for any B ∈ HC: If for all
t ∈ B we have t ∈ ω, then B ∈ A. Note that in fact any subset of ω is in HC.
Indeed, they are countable and all of their elements are hc. This means that
P (ω) ⊆ A, a contradiction as A must be countable.


