STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Gregory Arone

Examination for
MM3001: Matematiska metoder för ekonomer 26th November 2020

Time: 13:00-18:00

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- Use of calculators is permitted for performing calculations. The use of graphic or programmable features is NOT permitted.
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear solutions even if the answer is correct.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.

Grades: There are 6 problems. A maximum of 5 points can be awarded for each problem solved. At least 15 points are necessary for the grade E . The problems are not ordered according to difficulty.

1. Let A be the matrix

$$
A=\left(\begin{array}{ccc}
2 & 5 & -4 \\
-2 & k-8 & 6 \\
4 & 9-k & k-7
\end{array}\right)
$$

depending on the parameter $k \in \mathbb{R}$.
(a) Compute the determinant $|A|$ as a function of k.

Sol: $2\left(k^{2}-1\right)$.
(b) Determine the values of k for which the matrix A is not invertible.

Sol: $k \in\{-1,1\}$.
(c) Solve the system of linear equations

$$
\left\{\begin{align*}
2 x+5 y-4 z & =1 \tag{2p}\\
-2 x-8 y+6 z & =0 \\
4 x+9 y-7 z & =2
\end{align*}\right.
$$

in the variables x, y and z using Gaussian elimination.
Sol: $(1,-1,-1)$.
2. Consider the function $f(x)=\sqrt[3]{x}$.
(a) Compute the Taylor polynomial $T_{2}(x)$ of order 2 of $f(x)$ about $x=8$.

Sol: $2+\frac{1}{12}(x-8)-\frac{1}{288}(x-8)^{2}$
(b) Use the answer from part (a) to estimate $\sqrt[3]{6}$.

Sol: $1 \frac{59}{72}=1.819 \overline{4}$
3. (a) Compute the primitive $\int \frac{\ln (t)}{5 t} \sqrt{1+(\ln (t))^{2}} d t$ (as a function of t).

Sol: $\frac{1}{15}\left(1+\ln (t)^{2}\right)^{3 / 2}$.
(b) Find a number a for which $\int_{1}^{a} \frac{1}{\sqrt{x}}+1 d x=5 \quad$ (3p).

Sol: $a=4$
4. Consider the function $f(x, y)=e^{x y-y}$ defined on the closed, bounded set

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-2 x-1 \leqslant y \leqslant x-1\right\} .
$$

(a) Determine the coordinates of the points of intersection of $\{y=x-1\}$ with $\left\{y=x^{2}-2 x-1\right\}$. (1p)
Sol: $(0,-1)$ and $(3,2)$.
(b) Determine the critical points of f and compute the value of f at those points.

Sol: $f(1,0)=1$ already on the boundary of D.
(c) Determine the maximal and the minimal values of f on D.

Sol: the only critical point on $y=x-1$ is (1,0). On $y=x^{2}-2 x-1$, we find $x=1 \pm \sqrt{2 / 3}$.
Only $1+\sqrt{2 / 3}$ is in D with corresponding value $e^{-4 \sqrt{2} /(3 \sqrt{3})} \equiv 0.337$ for $x=1+\sqrt{2 / 3}$ and $e^{-4 \sqrt{2} /(3 \sqrt{3})} \equiv 2.97$ for $x=1-\sqrt{2 / 3} . f(0,-1)=e, f(3,2)=e^{4}$. We obtain max $=e^{4}$ and $\min =0.337$.
5. (a) Compute

$$
\begin{equation*}
\lim _{x \rightarrow+\infty}\left(\frac{x^{2}}{x+2}-\frac{x^{2}+1}{x-3}\right) \tag{3p}
\end{equation*}
$$

Sol: -5
(b) Find a number a for which the following function is continuous for all x :

$$
f(x)=\left\{\begin{array}{cc}
a x & x \geq 2 \tag{2p}\\
x^{2}+a & x<2
\end{array}\right.
$$

Sol: $a=4$
6. Consider the function $f(x)=\frac{x}{x^{2}-3 x+2}$.
(a) Determine the domain of definition of f.

Sol: $x \neq 1,2$.
(b) Determine the local extreme points of f.

Sol: $x= \pm \sqrt{2}$
(c) Determine where f is increasing and where f is decreasing.

Sol: Decreasing: $(-\infty,-\sqrt{2}),(\sqrt{2}, 2),(2, \infty)$. Increasing: $(-\sqrt{2}, 1),(1, \sqrt{2})$

Formulas

The Taylor polynomial $T_{n}(x)$ of order n of the function $f(x)$ at $x=x_{0}$ is

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

The solutions of the equation $a x^{2}+b x+c=0$ are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ if $b^{2}-4 a c \geqslant 0$.

GOOD LUCK!

