STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Gregory Arone

Examination for
MM3001: Matematiska metoder för ekonomer 15th March 2021

Time: 8:00-13:00

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- Use of calculators is permitted for performing calculations. The use of graphic or programmable features is NOT permitted.
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear solutions even if the answer is correct.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.
- The solutions should be uploaded onto the course's webpage no later than 13:30

Note: There are six problems, some with multiple parts. The problems are not ordered according to difficulty

1. Let k be a fixed number. Consider the following system of linear equations, with unknowns x, y, z, and w.

$$
\begin{aligned}
3 x+y-2 z+w & =5 \\
x-y-z+w & =6 \\
5 x+3 y-3 z+k w & =4
\end{aligned}
$$

(a) Use Gaussian elimination to find for which value of k the system of equations has at least one solution.
(2p)
(b) For the value of k that you found in part (a), describe the general solution. Your answer should express x and y in terms of z and w. (2p)
(c) Find the solution with $z=-1, w=2$. (1p)
2. Consider the equation

$$
y^{2} x^{2}+\frac{x}{\sqrt{y}}=6
$$

This equation defines a curve in the plane. Notice that $(2,1)$ is a solution
(a) Use implicit differentiation to find the slope of the tangent line to this curve at the point $(2,1)$.
(b) Find the equation of the tangent line at the point $(2,1)$.
3. (a) Compute the integral $\int\left(t^{2}+1\right) e^{t^{3}+3 t} d t$ (as a function of t).
(b) Find a number a for which $\int_{a}^{0} \sqrt{1-x} d x=\frac{14}{3} \quad$ (3p).
4. Let a be some fixed number. Consider the function $f(x, y)=x^{2}+a x y+y^{2}-4 x-a x-2 y-2 a y$.
(a) Prove that $(2,1)$ is a critical point of f, for every a.
(b) Find the second derivatives $f_{x x}^{\prime \prime}, f_{x y}^{\prime \prime}$ and $f_{y y}^{\prime \prime}$. You answer may depend on a.
(c) Find for which a (if any) the point $(2,1)$ is a local maximum, for which a it is a local minimum, and for which it is neither. [The formula at the end of the test may help.] (2p)
5. Consider the function

$$
f(x, y)=3 x^{2}-12 x+3 y^{2}-4 y .
$$

Let D be the domain defined by the inequalities $0 \leq y$ and $x^{2}+y^{2} \leq 10$.
Find the global maximum and the global minimum of $f(x, y)$ on D. Remember to show clearly all the necessary steps.
6. Consider the function $f(x)=\sqrt{\ln \left(x^{2}-x-2\right)}$.
(a) Determine the domain of definition of f. (2p)
(b) Determine the local extreme points of f (if any). (1p)
(c) Determine where f is increasing and where f is decreasing.

Formulas

The second derivative criterion for a function of two variables $f(x, y)$ depends on the determinant $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]$. It says the following: If, at a critical point

- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}>0$ then f has a local minimum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}<0$ then f has a local maximum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]<0$ then f has neither a local maximum nor a local minimum at this critical point.

