STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Gregory Arone

Examination for
MM3001: Matematiska metoder för ekonomer 15th March 2021

Time: 8:00-13:00
 Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- Use of calculators is permitted for performing calculations. The use of graphic or programmable features is NOT permitted.
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear solutions even if the answer is correct.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.
- The solutions should be uploaded onto the course's webpage no later than 13:30

Note: There are six problems, some with multiple parts. The problems are not ordered according to difficulty

1. Let k be a fixed number. Consider the following system of linear equations, with unknowns x, y, z, and w.

$$
\begin{aligned}
3 x+y-2 z+w & =5 \\
x-y-z+w & =6 \\
5 x+3 y-3 z+k w & =4
\end{aligned}
$$

(a) Use Gaussian elimination to find for which value of k the system of equations has at least one solution.
Solution: Let us write the augmented matrix of coefficients, and apply Gaussian elimination

$$
\left[\begin{array}{ccccc}
3 & 1 & -2 & 1 & 5 \\
1 & -1 & -1 & 1 & 6 \\
5 & 3 & -3 & k & 4
\end{array}\right]
$$

$\mathrm{R} 1 \mapsto \frac{1}{3} \mathrm{R} 1$.

$$
\left[\begin{array}{ccccc}
1 & \frac{1}{3} & \frac{-2}{3} & \frac{1}{3} & \frac{5}{3} \\
1 & -1 & -1 & 1 & 6 \\
5 & 3 & -3 & k & 4
\end{array}\right]
$$

$\mathrm{R} 2 \mapsto \mathrm{R} 2-\mathrm{R} 1, \mathrm{R} 3 \mapsto \mathrm{R} 3-5 \mathrm{R} 1$.

$$
\left[\begin{array}{ccccc}
1 & \frac{1}{3} & \frac{-2}{3} & \frac{1}{3} & \frac{5}{3} \\
0 & -\frac{4}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{13}{3} \\
0 & \frac{4}{3} & \frac{1}{3} & k-\frac{5}{3} & -\frac{13}{3}
\end{array}\right]
$$

$\mathrm{R} 2 \mapsto-\frac{3}{4} \mathrm{R} 2$

$$
\left[\begin{array}{ccccc}
1 & \frac{1}{3} & \frac{-2}{3} & \frac{1}{3} & \frac{5}{3} \\
0 & 1 & \frac{1}{4} & -\frac{1}{2} & -\frac{13}{4} \\
0 & \frac{4}{3} & \frac{1}{3} & k-\frac{5}{3} & -\frac{13}{3}
\end{array}\right]
$$

$\mathrm{R} 1-\frac{1}{3} \mathrm{R} 2, \mathrm{R} 3-\frac{4}{3} \mathrm{R} 2$

$$
\left[\begin{array}{ccccc}
1 & 0 & \frac{-3}{4} & \frac{1}{2} & \frac{11}{4} \\
0 & 1 & \frac{1}{4} & -\frac{1}{2} & -\frac{13}{4} \\
0 & 0 & 0 & k-1 & 0
\end{array}\right]
$$

At this point we can conclude that the system has a solution for every k. However, the number of degrees of freedom depends on whether $k \neq 1$ or $k=1$. If $k \neq 1$, then we can divide R3 by $k-1$, clean up the rest of the fourth column, and the matrix has the following final form

$$
\left[\begin{array}{ccccc}
1 & 0 & \frac{-3}{4} & 0 & \frac{11}{4} \\
0 & 1 & \frac{1}{4} & 0 & -\frac{13}{4} \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and the general solution has one degree of freedom. On the other hand, if $k=1$ then the augmented coefficients matrix has the following form

$$
\left[\begin{array}{ccccc}
1 & 0 & \frac{-3}{4} & \frac{1}{2} & \frac{11}{4} \\
0 & 1 & \frac{1}{4} & -\frac{1}{2} & -\frac{13}{4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and the general solution has two degrees of freedom.
(b) For the value of k that you found in part (a), describe the general solution. Your answer should express x and y in terms of z and w.

Solution: If $k \neq 1$ then the general solution has the following form

$$
\begin{aligned}
x & =\frac{11}{4}+\frac{3}{4} z \\
y & =-\frac{13}{4}-\frac{1}{4} z \\
w & =0
\end{aligned}
$$

If $k=1$ then the general solution has the following form.

$$
\begin{aligned}
& x=\frac{11}{4}+\frac{3}{4} z-\frac{1}{2} w \\
& y=-\frac{13}{4}-\frac{1}{4} z+\frac{1}{2} w
\end{aligned} .
$$

(c) Find the solution with $z=-1, w=2$.

Solution: If $k \neq 1$ there is no such solution. If $k=1$ then $(x, y, z, w)=(1,-2,-1,2)$
2. Consider the equation

$$
y^{2} x^{2}+\frac{x}{\sqrt{y}}=6
$$

This equation defines a curve in the plane. Notice that $(2,1)$ is a solution
(a) Use implicit differentiation to find the slope of the tangent line to this curve at the point $(2,1)$. (3p)
Solution: Differentiating the equation, while viewing y as a function of x gives us the following equation:

$$
2 y y^{\prime} x^{2}+2 y^{2} x+\frac{1}{\sqrt{y}}-\frac{x y^{\prime}}{2 \sqrt[3]{y^{2}}}=0
$$

Which can be rewritten as

$$
y^{\prime}\left(2 y x^{2}-\frac{x}{2 \sqrt[3]{y^{2}}}\right)+\left(2 y^{2} x+\frac{1}{\sqrt{y}}\right)=0
$$

It follows that

$$
y^{\prime}=\frac{2 y^{2} x+\frac{1}{\sqrt{y}}}{\frac{x}{2 \sqrt[3]{y^{2}}}-2 y x^{2}}
$$

Substituting $x=2, y=1$ we obtain the answer $y^{\prime}=-\frac{5}{7}$.
(b) Find the equation of the tangent line at the point $(2,1)$.

Solution: This is a line of slop $-\frac{5}{7}$ passing through the point $(2,1)$. Therefore its equation is

$$
\frac{y-1}{x-2}=-\frac{5}{7}
$$

Simplifying, we get the equation $5 x+7 y=17$.
3. (a) Compute the integral $\int\left(t^{2}+1\right) e^{t^{3}+3 t} d t$ (as a function of t).

Solution: Use change of variables $u=t^{3}+3 t$. We get $d u=\left(3 t^{2}+3\right) d t$, or $\left(t^{2}+1\right) d t=\frac{d u}{3}$. Therefore

$$
\int\left(t^{2}+1\right) e^{t^{3}+3 t} d t=\int \frac{e^{u}}{3} d u=\frac{e^{u}}{3}+C=\frac{e^{t^{3}+3 t}}{3}+C
$$

(b) Find a number a for which $\int_{a}^{0} \sqrt{1-x} d x=\frac{14}{3} \quad(3 \mathrm{p})$.

Solution: Use the substitution $u=1-x, d u=-d x$

$$
\left.\int_{a}^{0} \sqrt{1-x} d x=\int_{1-a}^{1} \sqrt{u} \cdot(-d u)=\int_{1}^{1-a} \sqrt{u} d u=\frac{2 u^{\frac{3}{2}}}{3}\right]_{1}^{1-a}=\frac{2}{3}\left((1-a)^{\frac{3}{2}}-1\right)
$$

We obtain the equation

$$
\frac{2}{3}\left((1-a)^{\frac{3}{2}}-1\right)=\frac{14}{3}
$$

It simplifies to

$$
(1-a)^{\frac{3}{2}}=8 .
$$

So $1-a=8^{\frac{2}{3}}=4$ and $a=-3$.
4. Let a be some fixed number. Consider the function $f(x, y)=x^{2}+a x y+y^{2}-4 x-a x-2 y-2 a y$.
(a) Prove that $(2,1)$ is a critical point of f, for every a.

Solution: we calculate the partial derivatives of f

$$
f_{x}^{\prime}(x, y)=2 x+a y-4-a, \quad f_{y}^{\prime}(x, y)=a x+2 y-2-2 a .
$$

Substituting $x=2, y=1$ we obtain

$$
f_{x}^{\prime}(2,1)=4+a-4-a=0, \quad f_{y}^{\prime}(2,1)=2 a+2-2-2 a=0 .
$$

So $(2,1)$ is a critical point, regardless of a.
(b) Find the second derivatives $f_{x x}^{\prime \prime}, f_{x y}^{\prime \prime}$ and $f_{y y}^{\prime \prime}$. You answer may depend on a.

Solution:

$$
f_{x x}^{\prime \prime}(x, y)=2, \quad f_{x y}^{\prime \prime}(x, y)=a, \quad f_{x y}^{\prime \prime}(x, y)=2
$$

(c) Find for which a (if any) the point $(2,1)$ is a local maximum, for which a it is a local minimum, and for which it is neither. [The formula at the end of the test may help.] (2p)
Solution: We have the expression $f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2}=4-a^{2}$. By the second derivative criterion, and the convexity criterion we obtain that

- if $a>2$ or $a<-2$ then $f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2}<0$, and the critical point is neither a maximum nor minimum.
- If $-2 \leq a \leq 2$ then $f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2} \geq 0$ for all x, y. Since $f_{x x}^{\prime \prime}=2>0, f$ is convex on the entire plane, and the critical point is a local (and in fact global) minimum .

5. Consider the function

$$
f(x, y)=3 x^{2}-12 x+3 y^{2}-4 y
$$

Let D be the domain defined by the inequalities $0 \leq y$ and $x^{2}+y^{2} \leq 10$.
Find the global maximum and the global minimum of $f(x, y)$ on D. Remember to show clearly all the necessary steps. (5p)

Solution: We have to prepare our list of suspects. We proceed to find
Step one: interior points. We look for the critical points

$$
f_{x}^{\prime}(x, y)=6 x-12=0, \quad f_{y}^{\prime}(x, y)=6 y-4=0
$$

We obtain a single critical point $\left(2, \frac{2}{3}\right)$. It is easily checked that it is inside D, so it goes onto the list of suspects.
Step two: points satsifying $y=\sqrt{10-x^{2}}$. We substitute this expression into the function to obtain

$$
f\left(x, \sqrt{10-x^{2}}\right)=3 x^{2}-12 x+3\left(10-x^{2}\right)-4 \sqrt{10-x^{2}}=30-12 x-4 \sqrt{10-x^{2}}
$$

to find the critical points of this function we differentiate it and look where the derivative is zero

$$
-12-4 \frac{-2 x}{2 \sqrt{10-x^{2}}}=-12+4 \frac{x}{\sqrt{10-x^{2}}}=0 .
$$

This simplifes to

$$
\frac{x}{\sqrt{10-x^{2}}}=3, \quad x^{2}=90-9 x^{2}, \quad x^{2}=9, \quad x= \pm 3 .
$$

But the derivative is zero only for $x=3$. Since $y=\sqrt{10-x^{2}}$, we obtain a critical point $(3,1)$.
Step three: points satsifying $y=0$, and therefore $-\sqrt{10} \leq x \leq \sqrt{10}$. We substitute $y=0$ into the function to obtain

$$
f(x, 0)=3 x^{2}-12 x
$$

The derivative of this function is $6 x-12$. Setting it equal zero, we obtain the critical point $x=2$, so $(2,0)$ goes onto the list of suspects.
Step four: points where the boundary is not smooth: $(-\sqrt{10}, 0)$ and $(\sqrt{10}, 0)$.
Summarizing, we obtain the following table of suspect points and values of f :

(x, y)	$f(x, y)$
$\left(2, \frac{2}{3}\right)$	$-13 \frac{1}{3}$
$(3,1)$	-10
$(2,0)$	-12
$(-\sqrt{10}, 0)$	$30+12 \sqrt{10} \approx 68$
$(\sqrt{10}, 0)$	$30-12 \sqrt{10} \approx-8$

From this table we read that
f has a maximum value $30+12 \sqrt{10} \approx 68$ at $(-\sqrt{10}, 0)$ and a minimal value $-13 \frac{1}{3}$ at $\left(2, \frac{2}{3}\right)$.
6. Consider the function $f(x)=\sqrt{\ln \left(x^{2}-x-2\right)}$.
(a) Determine the domain of definition of f.

Solution: The function is well-defined when $\ln \left(x^{2}-x-2\right) \geq 0$. This is equivalent to saying that $x^{2}-x-2 \geq 1$, or $x^{2}-x-3 \geq 0$. We solve the associated quadratic equation

$$
x_{1,2}=\frac{1 \pm \sqrt{13}}{2}
$$

It follows that the domain of definition is $\left(-\infty, \frac{1-\sqrt{13}}{2}\right] \cup\left[\frac{1+\sqrt{13}}{2}, \infty\right)$.
(b) Determine the local extreme points of f (if any).

(1p)

Solution: We differentiate, and look for critical points. So we obtain the equation

$$
f^{\prime}(x)=\frac{2 x-1}{2\left(x^{2}-x-2\right) \sqrt{\ln \left(x^{2}-x-2\right)}}=0
$$

We saw that for all x in the domain of the function, $x^{2}-x-2 \geq 1$, and in particular $x^{2}-x-2>0$. It follows that the denominator is positive for all x in the domain of f. There is a potential critical point at $x=\frac{1}{2}$, but it is not in the domain of definition. So f is a differentiable function with no critical points, and therefore it has no local extreme points.
Remark: In fact, the endpoints of the intervals $\frac{1-\sqrt{13}}{2}$ and $\frac{1+\sqrt{13}}{2}$ are local minima, but in this class we identify "local extereme points" with critical points, and I don't expect the students to see this.
(c) Determine where f is increasing and where f is decreasing.

Solution: Consider again the expression for $f^{\prime}(x)$. We say that the denominator is always positive. It follows that f is increasing whenever the numerator $2 x-1$ is positive and is decreasing whenever it is negative. It follows that f is
decreasing on $\left(-\infty, \frac{1-\sqrt{13}}{2}\right)$ and increasing on $\left(\frac{1+\sqrt{13}}{2}, \infty\right)$.

Formulas

The second derivative criterion for a function of two variables $f(x, y)$ depends on the determinant $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]$. It says the following: If, at a critical point

- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}>0$ then f has a local minimum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}<0$ then f has a local maximum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]<0$ then f has neither a local maximum nor a local minimum at this critical point.

GOOD LUCK!

