STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Gregory Arone

Examination for
MM3001: Matematiska metoder för ekonomer 14th April 2021

Time: 8:00-13:00

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- Use of calculators is permitted for performing calculations. The use of graphic or programmable features is NOT permitted.
- Start every problem on a new page, and write at the top of the page which problem it belongs to. (But in multiple part problems it is not necessary to start every part on a new page)
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear solutions even if the answer is correct.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.
- The solutions should be uploaded onto the course's webpage no later than 13:30

Note: There are six problems, some with multiple parts. The problems are not ordered according to difficulty

1. (a) Suppose f is the following function

$$
\begin{equation*}
f(x)=\int_{0}^{x} e^{t^{2}} d t \tag{2p}
\end{equation*}
$$

What is $f^{\prime}(x)$? Hint: do not try to evaluate the integral.
(b) Now suppose g is the following function (defined for $x>0$)

$$
\begin{equation*}
g(x)=\int_{0}^{\sqrt{x}} e^{t^{2}} d t \tag{3p}
\end{equation*}
$$

What is $g^{\prime}(x)$?
2. Suppose that $f(x), g(x)$ are two functions, and $h(x)=f(g(x))$. Assume furthermore that

$$
\begin{equation*}
f(2)=4, \quad f^{\prime}(2)=-2, \quad g(3)=2, \quad g^{\prime}(3)=-1 \tag{2p}
\end{equation*}
$$

(a) What is the equation of the tangent line to the graph of f at the point $(2, f(2))$?
(b) What is $h(3)$?
(c) What is $h^{\prime}(3)$?
3. (a) Compute the improper integral $\int_{e^{2}}^{\infty} \frac{1}{x(\ln x)^{2}} d x$. (3p)
(b) Let a be a fixed number, and let $f(x)$ be the following function, depending on a

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{a x} & x>2 \\
a-x & x \leq 2
\end{array}\right.
$$

For which value(s) of a is this function continuous? $\quad(2 \mathrm{p})$.
4. Consider the function of two variables: $f(x, y)=x^{2} y-x y$
(a) Find the critical points of this function. (3p)
(b) For each one of the critical points, determine if it is a local maximum, a local minimum, or neither. $\quad(2 \mathrm{p})$
5. Consider the function

$$
f(x)=\sqrt{x^{2}+x+2}
$$

(a) Find the domain of definition of f. (1p)
(b) Find the intervals where f is increasing and where f is decreasing.
(c) Find the minimum and the maximum of f on the interval $[-5,5]$.
6. Let a be a fixed number. Consider the following system of equations

$$
\begin{aligned}
x+2 y+3 z & =2 \\
x-y+2 z & =1 \\
x+(10-a) y+5 z & =3
\end{aligned}
$$

Use Gaussian elimination to:
(a) Find for which values of a (if any) the system has a unique solution, for which it has no solutions and for which it has infinitely many solutions.
(b) In cases when there is a unique solution, express the solution in terms of a.

Formulas

The second derivative criterion for a function of two variables $f(x, y)$ depends on the determinant $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]$. It says the following: If, at a critical point

- $\operatorname{det}\left[\begin{array}{cc}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}>0$ then f has a local minimum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}<0$ then f has a local maximum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]<0$ then f has neither a local maximum nor a local minimum at this critical point.

GOOD LUCK!

