STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Gregory Arone

Examination for
MM3001: Matematiska metoder för ekonomer 14th April 2021

Time: 8:00-13:00

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- Use of calculators is permitted for performing calculations. The use of graphic or programmable features is NOT permitted.
- Start every problem on a new page, and write at the top of the page which problem it belongs to. (But in multiple part problems it is not necessary to start every part on a new page)
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear solutions even if the answer is correct.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.
- The solutions should be uploaded onto the course's webpage no later than 13:30

Note: There are six problems, some with multiple parts. The problems are not ordered according to difficulty

1. (a) Suppose f is the following function

$$
\begin{equation*}
f(x)=\int_{0}^{x} e^{t^{2}} d t \tag{2p}
\end{equation*}
$$

What is $f^{\prime}(x)$? Hint: do not try to evaluate the integral.
Answer: By the fundamental theorem of calculus,

$$
f^{\prime}(x)=e^{x^{2}} .
$$

(b) Now suppose g is the following function (defined for $x>0$)

$$
\begin{equation*}
g(x)=\int_{0}^{\sqrt{x}} e^{t^{2}} d t \tag{3p}
\end{equation*}
$$

What is $g^{\prime}(x)$?
Answer: $g(x)=f(\sqrt{x})$ and therefore by the chain rule

$$
g^{\prime}(x)=f^{\prime}(\sqrt{x}) \cdot(\sqrt{x})^{\prime}=\frac{e^{\sqrt{x}^{2}}}{2 \sqrt{x}}=\frac{e^{x}}{2 \sqrt{x}} .
$$

2. Suppose that $f(x), g(x)$ are two functions, and $h(x)=f(g(x))$. Assume furthermore that

$$
f(2)=4, \quad f^{\prime}(2)=-2, \quad g(3)=2, \quad g^{\prime}(3)=-1 .
$$

(a) What is the equation of the tangent line to the graph of f at the point $(2, f(2))$?

Answer: It is a line passing through $(2,4)$ of slope -2 , so its equation is

$$
\frac{y-4}{x-2}=-2
$$

Or in more standard form

$$
y=-2 x+8
$$

(b) What is $h(3)$?

Answer: $h(3)=f(g(3))=f(2)=4$.
(c) What is $h^{\prime}(3)$?

Answer: By the chain rule, since $h(x)=f(g(x)), h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$ so

$$
h^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3)=f^{\prime}(2) \cdot g^{\prime}(3)=(-2) \cdot(-1)=2
$$

3. (a) Compute the improper integral $\int_{e^{2}}^{\infty} \frac{1}{x(\ln x)^{2}} d x$.

Answer: We use the substitution $u=\ln x, d u=\frac{d x}{x}$. Notice what as x goes from e^{2} to infinity, u goes from 2 to infinity.

$$
\int_{e^{2}}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\int_{2}^{\infty} \frac{1}{u^{2}} d u=\lim _{c \rightarrow \infty} \int_{2}^{c} \frac{1}{u^{2}} d u=\lim _{c \rightarrow \infty}\left[-\frac{1}{u}\right]_{2}^{\infty}=\lim _{c \rightarrow \infty} \frac{1}{2}-\frac{1}{c}=\frac{1}{2}
$$

(b) Let a be a fixed number, and let $f(x)$ be the following function, depending on a

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{a x} & x>2 \\
a-x & x \leq 2
\end{array}\right.
$$

For which value(s) of a is this function continuous? (2p).
Answer: The function is continuous when both formulas agree at 2. This means that a has to satisfy the following equation

$$
\sqrt{2 a}=a-2
$$

This equation implies that

$$
2 a=(a-2)^{2}=a^{2}-4 x+4
$$

or equivalently

$$
a^{2}-6 a+4=0
$$

Solving the quadratic equation we find that

$$
a_{1,2}=3 \pm \sqrt{5}
$$

Notice that $3-\sqrt{5}<2$, therefore this number does not satisfy the equation $\sqrt{2 a}=a-2$. So the only solution is $a=3+\sqrt{5}$.
4. Consider the function of two variables: $f(x, y)=x^{2} y-x y$
(a) Find the critical points of this function. (3p)

Answer: The critical points are points (x, y) that satsify both of the following equations.

$$
\begin{array}{r}
f_{x}^{\prime}(x, y)=2 x y-y=0 \\
f_{y}^{\prime}(x, y)=x^{2}-x=0
\end{array}
$$

The first equation says that either $x=\frac{1}{2}$ or $y=0$. The second equation says either $x=0$ or $x=1$. It follows that there is no critical point with $x=\frac{1}{2}$. The only critical points are $(0,0)$ and $(1,0)$.
(b) For each one of the critical points, determine if it is a local maximum, a local minimum, or neither. (2p)
Answer: First, let us calculate the second derivatives

$$
f_{x x}^{\prime \prime}=2 y, \quad f_{x y}^{\prime \prime}=2 x-1, \quad f_{y y}^{\prime \prime}=0
$$

Next, we need to calculate the determinant of the matrix of second derivatives.

$$
\operatorname{det}\left[\begin{array}{ll}
f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\
f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
2 y & 2 x-1 \\
2 x-1 & 0
\end{array}\right]=-(2 x-1)^{2}
$$

At both critical points, the determinant is -1 , which is a negative number. It follows that each critical point is a saddle point, i.e., neither a local minumum nor a local maximum.
5. Consider the function

$$
f(x)=\sqrt{x^{2}+x+2}
$$

(a) Find the domain of definition of f.

Answer: The function is defined whenever $x^{2}+x+2 \geq 0$. It is easy to check that this holds for all x, so the domain is all of \mathbb{R}.
(b) Find the intervals where f is increasing and where f is decreasing.

Answer:

$$
\begin{equation*}
f^{\prime}(x)=\frac{2 x+1}{2 \sqrt{x^{2}+x+2}} . \tag{2p}
\end{equation*}
$$

The denominator is always positive, so the sign of $f^{\prime}(x)$ is the same as the sign of $2 x+1$. It follows that the function is increasing on the interval $\left[-\frac{1}{2}, \infty\right)$ and decreasing on $\left(-\infty,-\frac{1}{2}\right]$.
(c) Find the minimum and the maximum of f on the interval $[-5,5]$.

Answer: by the calculation of $f^{\prime}(x)$, the only critical point of f is $x=-\frac{1}{2}$, which is inside the interval. So our list of suspects consists of $-5,-\frac{1}{2}$, and 5 . Evaluating f at these points we find that

$$
\begin{aligned}
f(-5) & =\sqrt{22} \\
f\left(-\frac{1}{2}\right) & =\frac{\sqrt{7}}{2} \\
f(5) & =\sqrt{32}
\end{aligned}
$$

It follows that f attains a minimum at $x=-\frac{1}{2}$ and a maximum at $x=5$.
6. Let a be a fixed number. Consider the following system of equations

$$
\begin{aligned}
x+2 y+3 z & =2 \\
x-y+2 z & =1 \\
x+(10-a) y+5 z & =3
\end{aligned}
$$

Use Gaussian elimination to:
(a) Find for which values of a (if any) the system has a unique solution, for which it has no solutions and for which it has infinitely many solutions.
Answer: Let us write the extended matrix of coefficients

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
1 & -1 & 2 & 1 \\
1 & 10-a & 5 & 3
\end{array}\right]
$$

Now we perform the Gauss elimination, indicating at each step the row operations. We begin with the operations $\mathrm{R} 2 \rightarrow \mathrm{R} 2-\mathrm{R} 1$ and $\mathrm{R} 3 \rightarrow \mathrm{R} 3-\mathrm{R} 1$

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & -3 & -1 & -1 \\
0 & 8-a & 2 & 1
\end{array}\right]
$$

$R 3 \rightarrow-\frac{1}{3} R 3$.

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} \\
0 & 8-a & 2 & 1
\end{array}\right]
$$

$\mathrm{R} 1 \rightarrow \mathrm{R} 1-2 \mathrm{R} 2, R 3 \rightarrow \mathrm{R} 3-(8-a) \mathrm{R} 2$

$$
\left[\begin{array}{cccc}
1 & 0 & \frac{7}{3} & \frac{4}{3} \\
0 & 1 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 2-\frac{8-a}{3} & 1-\frac{8-a}{3}
\end{array}\right]
$$

Simplifying, we obtain the following matrix

$$
\left[\begin{array}{cccc}
1 & 0 & \frac{7}{3} & \frac{4}{3} \\
0 & 1 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & \frac{a-2}{3} & \frac{a-5}{3}
\end{array}\right]
$$

Notice that if $a=2$ we obtain in the last line the equation $0=-1$, which is impossible. We conclude that if $a=2$ then the system has no solutions. Assuming that $a \neq 2$ we divide the third row by $\frac{a-2}{3}$ to obtain the following matrix

$$
\left[\begin{array}{cccc}
1 & 0 & \frac{7}{3} & \frac{4}{3} \\
0 & 1 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 1 & \frac{a-5}{a-2}
\end{array}\right]
$$

Finally, we perform the operations $R 1 \rightarrow R 1-\frac{7}{3} R 3$ and $R 2-\frac{1}{3} R 3$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{4}{3}-\frac{7}{3} \frac{a-5}{a-2} \\
0 & 1 & 0 & \frac{1}{3}-\frac{a-5}{3(a-2)} \\
0 & 0 & 1 & \frac{a-5}{a-2}
\end{array}\right]
$$

Simplifying, we obtain the following matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{a-9}{a-2} \\
0 & 1 & 0 & \frac{1}{a-2} \\
0 & 0 & 1 & \frac{a-5}{a-2}
\end{array}\right]
$$

We conclude that when $a \neq 2$, the system has a unique solution.
(b) In cases when there is a unique solution, express the solution in terms of a.

Answer: From the matrix at the end of part (a) we conclude that when $a \neq 2$ the unique solution is given by

$$
x=\frac{9-a}{a-2}, \quad y=\frac{1}{a-2}, \quad z=\frac{a-5}{a-2} .
$$

Formulas

The second derivative criterion for a function of two variables $f(x, y)$ depends on the determinant $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]$. It says the following: If, at a critical point

- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}>0$ then f has a local minimum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]>0$ and $f_{x x}^{\prime \prime}<0$ then f has a local maximum at this critical point.
- $\operatorname{det}\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]<0$ then f has neither a local maximum nor a local minimum at this critical point.

GOOD LUCK!

