MATEMATISKA INSTITUTIONEN	Tentamensskrivning i
STOCKHOLMS UNIVERSITET	Combinatorics
Avd. Matematik	7.5 hp
Examinator: Sven Raum	13th January 2020

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved. A score of at least 15 points will ensure a pass grade.
- The exam is returned on 20th January at 11 o'clock in my office 110 in hus 6 .

GOOD LUCK!

1. Recursions and generating series (7 points)
(a) Define the term generating series.
(b) Assume that the generating series of a sequence $\left(a_{n}\right)_{n}$ of real numbers has positive radius of convergence and denote its generating function by $f=f(x)$. Prove that

$$
\frac{f(x)}{1-x}
$$

is the generating function of

$$
\left(\sum_{k \leq n} a_{k}\right)_{n}
$$

(c) Find the generating function for the sequence $\left(n^{3}\right)_{n}$. You may freely use knowledge about the generating function for $\left(n^{2}\right)_{n}$.
(d) Use the generating series methods to find the generating function $f=f(x)$ of the unique sequence $\left(a_{n}\right)_{n}$ satisfying

$$
a_{n}=2 a_{n-1}+n^{3} \text { for } n \geq 1 \quad \text { and } a_{0}=1 .
$$

2. Graphs (7 points)
(a) Define the terms directed graph and undirected graph.
(b) Draw a planar depiction of the following graphs:
i. K_{4}.
ii. $K_{5}-e$ for an arbitrary edge $e \in E\left(K_{5}\right)$.
iii. $K_{3,2}$.
iv. $K_{3,3}-e$ for an arbitrary edge $e \in E\left(K_{3,3}\right)$.
(c) Find an Euler circuit in each of the following graphs

(d) Let G be a graph admitting an Euler circuit. Prove that $\operatorname{deg}(v)$ is even for all $v \in V(G)$.
(e) Calculate the chromatic polynomial of the n-cycle graph for all $n \in \mathbb{N}_{\geq 3}$.
3. Networks (6 points)
(a) Define the term flow and the value of a flow on a transport network.
(b) Find a maximal flow and a minimal cut of the following transport network:

(c) Let $N=(G, c)$ be a transport network and $f: E(G) \rightarrow \mathbb{N}$ a flow on N. Show that for every cut $\left(P, P^{\mathrm{c}}\right)$ of N the following equality holds:

$$
\operatorname{val}(f)=\sum_{v \in P, w \in P^{c}} f(v, w)-f(w, v) .
$$

4. Algorithms (4 points)
(a) Define the terms tree and spanning tree.
(b) Describe how the depth-first algorithm starting at vertex ($0,0,0,0$) runs on the 4 -cube with the lexicographical ordering of vertices.
5. Finite geometry (6 points)
(a) Define the term finite affine plane.
(b) Define formally and illustrate with a graphic the examples of the affine planes of rank 2 and 3.
(c) Show that every finite affine plane admits at least three parallelity classes of lines.
