MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Sven Raum

Tentamensskrivning i
Combinatorics

Lösingar

7.5 hp

13th January 2020

1. Recursions and generating series (7 points)
(a) Define the term generating series.
(b) Assume that the generating series of a sequence $\left(a_{n}\right)_{n}$ of real numbers has positive radius of convergence and denote its generating function by $f=f(x)$. Prove that

$$
\frac{f(x)}{1-x}
$$

is the generating function of

$$
\left(\sum_{k \leq n} a_{k}\right)_{n}
$$

(c) Find the generating function for the sequence $\left(n^{3}\right)_{n}$. You may freely use knowledge about the generating function for $\left(n^{2}\right)_{n}$.
(d) Use the generating series methods to find the generating function $f=f(x)$ of the unique sequence $\left(a_{n}\right)_{n}$ satisfying

$$
a_{n}=2 a_{n-1}+n^{3} \text { for } n \geq 1 \quad \text { and } a_{0}=1
$$

Solution.

(a) Given a sequence of numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$, its generating series is the formal power series $\sum_{n \in \mathbb{N}} a_{n} x^{n}$.
(b) Let $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ be the generating series of $\left(a_{n}\right)_{n}$, which by assumption has positive radius of convergence. We know that

$$
g(x)=\frac{1}{1-x}=\sum_{n \in \mathbb{N}} x^{n}
$$

for all $|x|<1$. So $g(x)$ is the generating function of the constant sequence $\left(b_{n}\right)_{n}=(1)_{n}$. Since both power series defining f and g have positive radius of convergence, their formal product as power series equals the product of functions. So

$$
\frac{f(x)}{1-x}=f(x) g(x)=\sum_{n \in \mathbb{N}}\left(\sum_{k \leq n} a_{k} b_{n-k}\right) x^{n}=\sum_{n \in \mathbb{N}}\left(\sum_{k \leq n} a_{k}\right) x^{n}
$$

This is what we had to show.
(c) The generating function for $\left(n^{2}\right)_{n \in \mathbb{N}}$ is

$$
\frac{x(x+1)}{(1-x)^{3}}=\sum_{n \in \mathbb{N}} n^{2} x^{n}
$$

Since this generating series has positive radius of convergence, its formal derivative equals its analytic derivative. So we obtain

$$
\sum_{n=1}^{\infty} n^{2} \cdot n x^{n-1}=\frac{\mathrm{d}}{\mathrm{~d} x} \frac{x(x+1)}{(1-x)^{3}}
$$

The right-hand side equals

$$
\begin{aligned}
\frac{(1+2 x)(1-x)^{3}-x(1+x) 3(1-x)^{2}(-1)}{(1-x)^{6}} & =\frac{(1+2 x)(1-x)+3 x(1+x)}{(1-x)^{4}} \\
& =\frac{1-x+2 x-2 x^{2}+3 x+3 x^{2}}{(1-x)^{4}} \\
& =\frac{1+4 x+x^{2}}{(1-x)^{4}}
\end{aligned}
$$

Multiplying this function by x, we hence obtain

$$
\sum_{n \in \mathbb{N}} n^{3} x^{n}=\frac{x\left(1+4 x+x^{2}\right)}{(1-x)^{4}}
$$

(d) The generating series method assumes that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a generating function, say $f(x)$. For $n \geq 1$, we multiply the relation

$$
a_{n}=2 a_{n-1}+n^{3}
$$

with x^{n} and take the formal sum, in order to obtain the equality of power series

$$
\sum_{n=1}^{\infty} a_{n} x^{n}=2 \sum_{n=1}^{\infty} a_{n-1} x^{n}+\sum_{n=1}^{\infty} n^{3} x^{n}
$$

Making use the computed generating function for $\left(n^{3}\right)_{n \in \mathbb{N}}$, using the initial condition $a_{0}=1$ and substituting the generating function $f(x)$ for the generating series of $\left(a_{n}\right)_{n \in \mathbb{N}}$, we obtain

$$
f(x)-1=2 x\left(f(x)+\frac{x\left(1+4 x+x^{2}\right)}{(1-x)^{4}}\right.
$$

Solving this expression for $f(x)$, we obtain

$$
f(x)=\frac{x\left(1+4 x+x^{2}\right)}{(1-x)^{4}(1-2 x)}+\frac{1}{1-2 x}=\frac{1-3 x+10 x^{2}-3 x^{3}+x^{4}}{(1-x)^{4}(1-2 x)}
$$

2. Graphs (7 points)
(a) Define the terms directed graph and undirected graph.
(b) Draw a planar depiction of the following graphs:
i. K_{4}.
ii. $K_{5}-e$ for an arbitrary edge $e \in E\left(K_{5}\right)$.
iii. $K_{3,2}$.
iv. $K_{3,3}-e$ for an arbitrary edge $e \in E\left(K_{3,3}\right)$.
(c) Find an Euler circuit in each of the following graphs

(d) Let G be a graph admitting an Euler circuit. Prove that $\operatorname{deg}(v)$ is even for all $v \in V(G)$.
(e) Calculate the chromatic polynomial of the n-cycle graph for all $n \in \mathbb{N}_{\geq 3}$.

Solution.

(a) A directed graph is a pair (V, E) of a non-empty set V and a subset $E \subset V \times V$. An undirected graph is a pair (V, E) of a non-empty set V and a subset $E \subset\{a \in \mathcal{P}(V)||a| \in\{1,2\}\}$, where $\mathcal{P}(V)$ denotes the set of all subsets of V.
(b) The following drawing indicates the additional vertex when passing from K_{4} to $K_{5} \backslash e$ and from $K_{3,2}$ to $K_{3,3} \backslash e$, respectively.

(c) Both graphs have a vertex of odd degree, so they do not admit any Euler circuit by the next item.
(d) Let $G=(V, E)$ be a graph admitting an Euler circuit. Since every loop of G contributes 2 to its adjacent vertex' degree, we may assume that G has no loops. Let $\left(v_{1}, \ldots, v_{n}\right)$ be an Euler circuit in G. Then for any $v \in V$, we find that

$$
\operatorname{deg}(v)=|\{e \in E \mid v \in e\}|=\left|\left\{i \in\{1, \ldots, n\} \mid v \in\left\{v_{i}, v_{i+1(\bmod n)}\right\}\right\}\right|
$$

is divisible by 2 , since $v=v_{i}$ implies $v \in\left\{v_{i-1}, v_{i}\right\}$ and $v \in\left\{v_{i}, v_{i+1}\right\}$.
(e) We claim that $P\left(C_{n}, x\right)=(x-1)^{n}+(-1)^{n}(x-1)$ for all $n \in \mathbb{N}_{\geq 3}$. We will prove this by induction. For the case $n=3$, we calculate the chromatic numbers

$$
\begin{gathered}
\chi_{1}\left(C_{3}\right)=0 \\
\chi_{2}\left(C_{3}\right)=0 \\
\chi_{3}\left(C_{3}\right)=3!=6
\end{gathered}
$$

which leads us to the chromatic polynomial $P\left(C_{3}, x\right)=x(x-1)(x-2)=(x-1)^{3}+(-1)^{3}(x-1)$. Let us next denote by L_{n} the path with n vertices. We know that

$$
P\left(L_{n}, x\right)=x(x-1)^{n-1} \quad n \geq 1 .
$$

This is relevant, since choosing any edge e of C_{n}, we have $C_{n} \backslash e=L_{n}$ as long as $n \geq 3$. Further, collapsing e, we obtain C_{n-1}. So the following formula holds for all $n \geq 3: P\left(C_{n}, x\right)=$ $P\left(L_{n}, x\right)-P\left(C_{n-1}, x\right)$. We thus proceed by induction and assume that the result holds for some $n \geq 3$ and calculate

$$
P\left(C_{n+1}, x\right)=x(x-1)^{n}-\left((x-1)^{n}+(-1)^{n}(x-1)\right)=(x-1)^{n+1}+(-1)^{n+1}(x-1)
$$

This completes the induction and hence the proof.
3. Networks (6 points)
(a) Define the term flow and the value of a flow on a transport network.
(b) Find a maximal flow and a minimal cut of the following transport network:

(c) Let $N=(G, c)$ be a transport network and $f: E(G) \rightarrow \mathbb{N}$ a flow on N. Show that for every cut (P, P^{c}) of N the following equality holds:

$$
\operatorname{val}(f)=\sum_{v \in P, w \in P^{\mathrm{c}}} f(v, w)-f(w, v)
$$

Solution.

(a) Given a transport network $N=(G, c)$, a flow on N is a function $f: V(G) \times V(G) \rightarrow \mathbb{N}$ such that

- $f(v, w) \leq c(v, w)$ for all $v, w \in V(G)$, and
- $\sum_{v \in V(G)} f(v, w)=\sum_{v \in V(G)} f(w, v)$ for all $w \in V(G)$ which are neither source nor sink of N. The value of f is

$$
\operatorname{val}(f)=\sum_{v \in V(G)} f(a, v)
$$

where a denotes the source of N.
(b) The following flow has value 5 .

We find a cut with capacity 5 too. One such cut is $\left(P, P^{\mathrm{c}}\right)$ where P^{c} contains exactly the sink z and the unique adjacent vertex v such that (v, z) has capacity 5 . The two vertices are marked in the graphic. By the max-flow-min-cut theorem, this already shows that the found flow is maximal and the indicated cut is minimal.
(c) We adopt the notation of the question and denote the source of N by a. Then

$$
\begin{align*}
\operatorname{val}(f) & =\sum_{\substack{v \in V(G)}} f(a, v) \tag{definition}\\
& =\sum_{v \in V(G)} f(a, v)-f(v, a) \\
& =\sum_{v \in V(G)} f(a, v)-f(v, a)+\sum_{\substack{w \in P \backslash\{a\} \\
\text { (equilibrium condition at non-terminal vertices) }}} \sum_{v \in(G)} f(w, v)-f(v, w) \\
& =\sum_{\substack{w \in P \\
v \in V(G)}} f(w, v)-f(v, w) \quad \text { (no incoming edges at the source) } \\
& =\left(\sum_{\substack{w \in P \\
w \in P}}+\sum_{\substack{w \in P \\
v \in P^{c}}}\right) f(w, v)-\left(\sum_{\substack{w \in P \\
v \in P}}+\sum_{\substack{w \in P \\
v \in P^{c}}}\right) f(v, w) \quad \text { (splification) } \\
& =\sum_{\substack{w \in P \\
v \in P^{c}}} f(w, v)-\sum_{\substack{w \in P \\
v \in P^{c}}} f(v, w) \\
& =\sum_{\substack{w \in P \\
v \in P^{c}}} f(w, v)-f(v, w) .
\end{align*}
$$

This is what we had to show.
4. Algorithms (4 points)
(a) Define the terms tree and spanning tree.
(b) Describe how the depth-first algorithm starting at vertex $(0,0,0,0)$ runs on the 4 -cube with the lexicographical ordering of vertices.

Solution.

(a) A tree is a connected, loop-free graph without cycles. Given a graph G, a spanning tree of G is a subgraph T of G that is a tree and satisfies $V(T)=V(G)$.
(b) Recall that the vertices of the 4 -cube are 4 -tuples $\{0,1\}^{4}$, which are adjacent if and only if they differ in exactly one coordinate. The lexicographical order on 4 -tuples is given by $a>b$ if and only if $a \neq b$ and the first entry of a which differs from the respective entry of b is bigger. Formally, the latter condition can be described as $a_{i}>b_{i}$ for $i=\min \left\{j \in\{1, \ldots, 4\} \mid a_{j} \neq b_{j}\right\}$. The depth-first algorithm then visits the following sequence of vertices, which defines a spanning tree (which is a path) of Q_{4} :
$(0,0,0,0)$
$(0,0,0,1)$
$(0,0,1,1)$
$(0,0,1,0)$
$(0,1,1,0)$
$(0,1,0,0)$
$(0,1,0,1)$
$(0,1,1,1)$
$(1,1,1,1)$
$(1,0,1,1)$
$(1,0,0,1)$
$(1,0,0,0)$
$(1,0,1,0)$
$(1,1,1,0)$
$(1,1,0,0)$
$(1,1,0,1)$
5. Finite geometry (6 points)
(a) Define the term finite affine plane.
(b) Define formally and illustrate with a graphic the examples of the affine planes of rank 2 and 3.
(c) Show that every finite affine plane admits at least three parallelity classes of lines.

Solution.

(a) A finite affine place is a pair (P, L) of a set P and a subset $L \subset \mathcal{P}(P)$ such that

- for every pair of distinct points $p_{1}, p_{2} \in P$ there is a unique $l \in L$ such that $p_{1}, p_{2} \in l$,
- for every $l \in L$ and every $p \in P \backslash l$ there is a unique $l^{\prime} \in L$ such that $p \in l^{\prime}$ and $l \cap l^{\prime}=\emptyset$, and
- there are points $p_{1}, \ldots, p_{4} \in P$ such that for all $l \in L$ we have $\left|\left\{p_{1}, \ldots, p_{4}\right\} \cap l\right| \leq 2$.
(b) For a finite field k, we have $\mathbb{A}_{2}(k)=\left(k^{2}, L\right)$ where L consists of the lines

$$
\begin{gathered}
l_{a}=\left\{(x, y) \in k^{2} \mid x=a\right\} \\
l_{a, b}=\left\{(x, y) \in k^{2} \mid y=a x+b\right\}
\end{gathered}
$$

for $a, b \in k$. Taking $k=\mathbb{F}_{2}$ and $k=\mathbb{F}_{3}$, we obtain finite affine planes of rank 2 and 3 , respectively. They are illustrated by the following drawing.

(c) Let (P, L) be a finite affine plane and take p_{1}, \ldots, p_{4} such that for all $l \in L$ we have $\left|\left\{p_{1}, \ldots, p_{4}\right\} \cap l\right| \leq$ 2 , whose existence is guaranteed by the definition of a finite affine plane. Denote by l_{1}, l_{2}, l_{3} the lines through the pairs of points $\left(p_{1}, p_{4}\right),\left(p_{2}, p_{4}\right)$ and $\left(p_{3}, p_{4}\right)$, respectively. Then l_{1}, l_{2}, l_{3} have pairwise non-empty intersection, but they are not equal thanks to the condition on p_{1}, \ldots, p_{4}. They are hence from three different parallelity classes.

