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1. Recursions and generating series (7 points)

(a) Define the term generating series.

(b) Assume that the generating series of a sequence (an)n of real numbers has positive radius of
convergence and denote its generating function by f = f(x). Prove that

f(x)

1− x

is the generating function of ∑
k≤n

ak


n

.

(c) Find the generating function for the sequence (n3)n. You may freely use knowledge about the
generating function for (n2)n.

(d) Use the generating series methods to find the generating function f = f(x) of the unique sequence
(an)n satisfying

an = 2an−1 + n3 for n ≥ 1 and a0 = 1.

Solution.

(a) Given a sequence of numbers (an)n∈N, its generating series is the formal power series
∑

n∈N anx
n.

(b) Let f(x) =
∑

n∈N anx
n be the generating series of (an)n, which by assumption has positive radius

of convergence. We know that

g(x) =
1

1− x
=

∑
n∈N

xn

for all |x| < 1. So g(x) is the generating function of the constant sequence (bn)n = (1)n. Since
both power series defining f and g have positive radius of convergence, their formal product as
power series equals the product of functions. So

f(x)

1− x
= f(x)g(x) =

∑
n∈N

∑
k≤n

akbn−k

xn =
∑
n∈N

∑
k≤n

ak

xn.

This is what we had to show.

(c) The generating function for (n2)n∈N is

x(x+ 1)

(1− x)3
=

∑
n∈N

n2xn.
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Since this generating series has positive radius of convergence, its formal derivative equals its
analytic derivative. So we obtain

∞∑
n=1

n2 · nxn−1 =
d

dx

x(x+ 1)

(1− x)3
.

The right-hand side equals

(1 + 2x)(1− x)3 − x(1 + x)3(1− x)2(−1)
(1− x)6

=
(1 + 2x)(1− x) + 3x(1 + x)

(1− x)4

=
1− x+ 2x− 2x2 + 3x+ 3x2

(1− x)4

=
1 + 4x+ x2

(1− x)4
.

Multiplying this function by x, we hence obtain∑
n∈N

n3xn =
x(1 + 4x+ x2)

(1− x)4
.

(d) The generating series method assumes that the sequence (an)n∈N has a generating function, say
f(x). For n ≥ 1, we multiply the relation

an = 2an−1 + n3

with xn and take the formal sum, in order to obtain the equality of power series

∞∑
n=1

anx
n = 2

∞∑
n=1

an−1x
n +

∞∑
n=1

n3xn.

Making use the computed generating function for (n3)n∈N, using the initial condition a0 = 1 and
substituting the generating function f(x) for the generating series of (an)n∈N, we obtain

f(x)− 1 = 2x(f(x) +
x(1 + 4x+ x2)

(1− x)4
.

Solving this expression for f(x), we obtain

f(x) =
x(1 + 4x+ x2)

(1− x)4(1− 2x)
+

1

1− 2x
=

1− 3x+ 10x2 − 3x3 + x4

(1− x)4(1− 2x)
.

2. Graphs (7 points)

(a) Define the terms directed graph and undirected graph.

(b) Draw a planar depiction of the following graphs:

i. K4.
ii. K5 − e for an arbitrary edge e ∈ E(K5).
iii. K3,2.
iv. K3,3 − e for an arbitrary edge e ∈ E(K3,3).

(c) Find an Euler circuit in each of the following graphs
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• • • •

• • • •

• • •

• • • •

• • • •

• • • •

(d) Let G be a graph admitting an Euler circuit. Prove that deg(v) is even for all v ∈ V (G).

(e) Calculate the chromatic polynomial of the n-cycle graph for all n ∈ N≥3.

Solution.

(a) A directed graph is a pair (V,E) of a non-empty set V and a subset E ⊂ V × V . An undirected
graph is a pair (V,E) of a non-empty set V and a subset E ⊂ {a ∈ P(V ) | |a| ∈ {1, 2}}, where
P(V ) denotes the set of all subsets of V .

(b) The following drawing indicates the additional vertex when passing from K4 to K5 \ e and from
K3,2 to K3,3 \ e, respectively.

(c) Both graphs have a vertex of odd degree, so they do not admit any Euler circuit by the next item.

(d) Let G = (V,E) be a graph admitting an Euler circuit. Since every loop of G contributes 2 to its
adjacent vertex’ degree, we may assume that G has no loops. Let (v1, . . . , vn) be an Euler circuit
in G. Then for any v ∈ V , we find that

deg(v) = |{e ∈ E | v ∈ e}| = |{i ∈ {1, . . . , n} | v ∈ {vi, vi+1(modn)}}|

is divisible by 2, since v = vi implies v ∈ {vi−1, vi} and v ∈ {vi, vi+1}.

3



(e) We claim that P (Cn, x) = (x−1)n+(−1)n(x−1) for all n ∈ N≥3. We will prove this by induction.
For the case n = 3, we calculate the chromatic numbers

χ1(C3) = 0

χ2(C3) = 0

χ3(C3) = 3! = 6

which leads us to the chromatic polynomial P (C3, x) = x(x− 1)(x− 2) = (x− 1)3+(−1)3(x− 1).
Let us next denote by Ln the path with n vertices. We know that

P (Ln, x) = x(x− 1)n−1 n ≥ 1.

This is relevant, since choosing any edge e of Cn, we have Cn \ e = Ln as long as n ≥ 3.
Further, collapsing e, we obtain Cn−1. So the following formula holds for all n ≥ 3: P (Cn, x) =
P (Ln, x)− P (Cn−1, x). We thus proceed by induction and assume that the result holds for some
n ≥ 3 and calculate

P (Cn+1, x) = x(x− 1)n − ((x− 1)n + (−1)n(x− 1)) = (x− 1)n+1 + (−1)n+1(x− 1).

This completes the induction and hence the proof.

3. Networks (6 points)

(a) Define the term flow and the value of a flow on a transport network.

(b) Find a maximal flow and a minimal cut of the following transport network:

•

• • •

• • •

• • •

•

5

2

4
1

3

2

3

2

3

1

1

4

1

2

2

3

5

4

(c) Let N = (G, c) be a transport network and f : E(G) → N a flow on N . Show that for every cut
(P, P c) of N the following equality holds:

val(f) =
∑

v∈P,w∈P c

f(v, w)− f(w, v).

Solution.

(a) Given a transport network N = (G, c), a flow on N is a function f : V (G)× V (G)→ N such that

• f(v, w) ≤ c(v, w) for all v, w ∈ V (G), and
•
∑

v∈V (G) f(v, w) =
∑

v∈V (G) f(w, v) for all w ∈ V (G) which are neither source nor sink of N .

The value of f is

val(f) =
∑

v∈V (G)

f(a, v)

where a denotes the source of N .
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(b) The following flow has value 5.

•

• •

• • •

• • •

⊗

⊗

5,1

2,2

4,2
1,0

3,1

2,0

3,2

2,2

3,0

1,0

1,1

4,2

1,0

2,2

2,0

3,2

5,1

4,4

We find a cut with capacity 5 too. One such cut is (P, P c) where P c contains exactly the sink z
and the unique adjacent vertex v such that (v, z) has capacity 5. The two vertices are marked in
the graphic. By the max-flow-min-cut theorem, this already shows that the found flow is maximal
and the indicated cut is minimal.

(c) We adopt the notation of the question and denote the source of N by a. Then

val(f) =
∑

v∈V (G)

f(a, v) (definition)

=
∑

v∈V (G)

f(a, v)− f(v, a) (no incoming edges at the source)

=
∑

v∈V (G)

f(a, v)− f(v, a) +
∑

w∈P\{a}

∑
v∈V (G)

f(w, v)− f(v, w)

(equilibrium condition at non-terminal vertices)

=
∑
w∈P

v∈V (G)

f(w, v)− f(v, w) (simplification)

=

∑
w∈P
v∈P

+
∑
w∈P
v∈P c

 f(w, v)−

∑
w∈P
v∈P

+
∑
w∈P
v∈P c

 f(v, w) (splitting the sum)

=
∑
w∈P
v∈P c

f(w, v)−
∑
w∈P
v∈P c

f(v, w) (cancellation)

=
∑
w∈P
v∈P c

f(w, v)− f(v, w).

This is what we had to show.

4. Algorithms (4 points)

(a) Define the terms tree and spanning tree.

(b) Describe how the depth-first algorithm starting at vertex (0, 0, 0, 0) runs on the 4-cube with the
lexicographical ordering of vertices.

Solution.

(a) A tree is a connected, loop-free graph without cycles. Given a graph G, a spanning tree of G is a
subgraph T of G that is a tree and satisfies V (T ) = V (G).
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(b) Recall that the vertices of the 4-cube are 4-tuples {0, 1}4, which are adjacent if and only if they
differ in exactly one coordinate. The lexicographical order on 4-tuples is given by a > b if and only
if a 6= b and the first entry of a which differs from the respective entry of b is bigger. Formally, the
latter condition can be described as ai > bi for i = min{j ∈ {1, . . . , 4}|aj 6= bj}. The depth-first
algorithm then visits the following sequence of vertices, which defines a spanning tree (which is a
path) of Q4:

(0, 0, 0, 0)

(0, 0, 0, 1)

(0, 0, 1, 1)

(0, 0, 1, 0)

(0, 1, 1, 0)

(0, 1, 0, 0)

(0, 1, 0, 1)

(0, 1, 1, 1)

(1, 1, 1, 1)

(1, 0, 1, 1)

(1, 0, 0, 1)

(1, 0, 0, 0)

(1, 0, 1, 0)

(1, 1, 1, 0)

(1, 1, 0, 0)

(1, 1, 0, 1)

5. Finite geometry (6 points)

(a) Define the term finite affine plane.

(b) Define formally and illustrate with a graphic the examples of the affine planes of rank 2 and 3.

(c) Show that every finite affine plane admits at least three parallelity classes of lines.

Solution.

(a) A finite affine place is a pair (P,L) of a set P and a subset L ⊂ P(P ) such that

• for every pair of distinct points p1, p2 ∈ P there is a unique l ∈ L such that p1, p2 ∈ l,
• for every l ∈ L and every p ∈ P \ l there is a unique l′ ∈ L such that p ∈ l′ and l∩ l′ = ∅, and
• there are points p1, . . . , p4 ∈ P such that for all l ∈ L we have |{p1, . . . , p4} ∩ l| ≤ 2.

(b) For a finite field k, we have A2(k) = (k2, L) where L consists of the lines

la = {(x, y) ∈ k2 | x = a}
la,b = {(x, y) ∈ k2 | y = ax+ b}

for a, b ∈ k. Taking k = F2 and k = F3, we obtain finite affine planes of rank 2 and 3, respectively.
They are illustrated by the following drawing.
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(c) Let (P,L) be a finite affine plane and take p1, . . . , p4 such that for all l ∈ L we have |{p1, . . . , p4} ∩ l| ≤
2, whose existence is guaranteed by the definition of a finite affine plane. Denote by l1, l2, l3 the
lines through the pairs of points (p1, p4), (p2, p4) and (p3, p4), respectively. Then l1, l2, l3 have
pairwise non-empty intersection, but they are not equal thanks to the condition on p1, . . . , p4.
They are hence from three different parallelity classes.
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