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1. Enumerative combinatorics (8 points)

(a) Use the generalised inclusion-exclusion formula to calculate how many integers between 1 and 100
are divisible by exactly three different primes.

(b) State and prove the pigeon hole principle.
(c) Show that Euler’s φ-function satisfies

φ(n) = n ·
∏

p divides n
p prime

(
1− 1

p

)
,

for all n ∈ N≥1.

Solution.

(a) If conditions c1, . . . , ck are given on elements of a set S, and Si denotes the number of elements
satisfying at least i of these conditions, then the number of elements satisfying exactly k conditions
is

Em =

k−m∑
i=0

(−1)i
(
m+ i

i

)
Sm+i.

We apply this formula to S = {n ∈ N | 1 ≤ n ≤ 100} and the conditions ci(n) given by the
statement that n is divisible by the i-th prime number. Note that the first four prime numbers
are 2, 3, 5, 7 and their product is 210, which is bigger than 100. So Si = 0 for all i ≥ 4. It hence
follows that E3 = S3, which found to be equal to 8 after a systematic enumeration of all possible
combinations.

(b) This can be found in the lecture notes.
(c) This can be found in the lecture notes.

2. Rook polynomials (8 points)

(a) Let us fix the following formalism for a combinatorial chessboard: a chessboard of size m× n is a
matrix C of size m× n whose entries are either 0 or 1. We interpret an entry of C equal to 0 as
a forbidden field, and an entry equal to 1 as an allowed field.
Define the rook numbers and the rook polynomial of a combinatorial chessboard.

(b) Draw all possible chessboards of size 2× 2 and find their rook polynomials.
(c) Calculate the rook polynomial of the following 4× 5 chessboard.
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(d) State formally and prove the fact that the rook polynomial is multiplicative.

Solution.

(a) Informally, the k-th rook number of a chessboard is the number of possible arrangements of k
rooks on the allowed fields of the board, so that no two rooks attack each other. Formally, given
a chessboard C ∈ Mm,n({0, 1}), the k-th rook number of C is

rk(C) =
∣∣{(f1, f2) | f1 : {1, . . . , k} → {1, . . . ,m} injective

f2 : {1, . . . , k} → {1, . . . , n} injective, and
Cf1(i),f2(i) = 1 for all i ∈ {1, . . . , k}

}∣∣.
Note that rk(C) = 0 for all k ≥ max{m,n}. With this remark, it makes sense to define the rook
polynomial of C as

r(C, x) =
∑
k∈N

rk(C)x
k.

(b) Systematically listing all chessboards and a direct counting argument lead to a solution.

(c) Using the recursive formula r(C, x) = r(Ce, x)+ xr(Cs, x) several time, one arrives at the expres-
sion

r(C, x) = 1 + 17x+ 86x2 + 144x3 + 60x4.

(d) This was a statement from the lecture.

3. Graphs (6 points)

(a) Define a Hamiltonian cycle in a graph.

(b) For each of the following graphs find a Hamiltonian cycle or show that there is none.

• • • •

• • • •

• • •

• • • •

• • • •

• • • •
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(c) Let G be a graph and v, w ∈ V (G). Show that if p = (v1, . . . , vn) is a walk from v to w that has
minimal length, then p is a path.

Solution.

(a) Given a graph G = (V,E) a Hamiltionian cycle in G is a cycle (v1, . . . , vn) such that V =
{v1, . . . , vn} and |V | = n− 1.

(b) The first graph has a no Hamiltonian cycle, as can be shown by noticing the special role of vertices
of degree 2. The second graph has a Hamiltonian cycle:

4. Networks (4 points)

(a) Let N be a transport network and f a flow on N . Define the term f-augmenting path.

(b) For the following flow, find all augmenting paths which are also paths in the underlying directed
graph. Explain why you found all.

•

• • •

• • •

• • •

•

J

G

5,2

2,1

4,2
1,1

3,2

2,0

3,2

2,1

3,2

1,1

1,0

4,3

1,0

2,1

2,0

3,3

5,0

4,4

Solution.

(a) Given a transport network N = (G, c) and a flow f on N , an f -augmenting path is a path
(v1, . . . , vn) in the underlying undirected graph of G such that for all i ∈ {1, . . . , n − 1} the
following conditions are satisfied:

• vi → vi+1 implies that f(vi, vi+1) < c(vi, vi+1), and
• vi+1 → vi implies that f(vi+1, vi) > 0.

(b) There is a single such path.

5. Finite geometry (4 points)

(a) Define the term parallel in the context of finite affine planes.

(b) Show that being parallel defines an equivalence relation.

Solution.

(a) Given a finite affine plane (P,L), two lines l1, l2 ∈ L are called parallel if either l1 = l2 or l1∩l2 = ∅.
(b) This is a statement from the lecture.
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