MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
Avd. Matematik

Lösningar till tentamensskrivning i
Matematik 3, kombinatorik , 7,5 hp
13 januari 2021

1. a) The generating function for the number of partitions into parts of sizes 1,2 , and 3 is given by:

$$
\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{3}}=\left(1+x+x^{2}+x^{3}+x^{4}+\ldots\right)\left(1+x^{2}+x^{4}+x^{6}+x^{8}+\ldots\right)\left(1-x^{3}+x^{6}+x^{9}+x^{12}+\ldots\right)
$$

We are interested in the coefficient at x^{10} which equals 14.
Answer: 14
b) By duality (transposing the Young diagram) we conclude that there are equally many partitions of 10 into three parts as there are partitions of 10 into parts $1,2,3$, i.e., 14 .
c) The generating function for the number of partitions with only odd parts is given by

$$
\frac{1}{1-x} \cdot \frac{1}{1-x^{3}} \cdot \frac{1}{1-x^{5}} \cdot \frac{1}{1-x^{7}} \cdot \frac{1}{1-x^{9}} \cdot \ldots
$$

Since we are interested in the coefficient at x^{10} it is enough to take only the presented terms. Expanding the five geometric progressions and collecting the coefficients at x^{10} we get $10 x^{10}$.
Answer: 10
d) Similarly, the generating function for the number of partitions with only even parts is given by

$$
\frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{4}} \cdot \frac{1}{1-x^{6}} \cdot \frac{1}{1-x^{8}} \cdot \frac{1}{1-x^{10}} \cdot \ldots
$$

Since we are interested in the coefficient at x^{10} it is enough to take only the presented terms. Expanding the five geometric progressions and collecting the coefficients at x^{10} we get $7 x^{10}$.

Answer: 7

2. Let a_{n} be the number of strings of length n containing only digits $0,1,2$ and having an odd number of even digits. Then there are $b_{n}=3^{n}-a_{n}$ strings of length n with an even number of even digits. Consider all strings of length n satisfying our required condition and having the last digit even. Their number equals $2 b_{n-1}$ since the last digit can be either 0 or 2 . If we count our strings of length n for which the last digit is odd, then there are a_{n-1} such. Summarizing we get the recurrence

$$
a_{n}=2 \cdot 3^{n-1}-a_{n-1}, n \geq 2 \text { with the initial condition } a_{1}=2
$$

General solution to the homogeneous equation $a_{n}=-a_{n-1}$ is given by $c(-1)^{n}$ where c is an arbitrary constant. A particular solution of the inhomogeneous recurrence relation can be found in the form $d \cdot 3^{n}$ where d is appropriately chosen. Substituting our ansatz in the equation gives $d=1 / 2$. Finally, the initial condition $a_{1}=2$ gives $c=-1 / 2$.
Answer: $\frac{(-1)^{n+1}+3^{n}}{2}$.
3. The rook polynomial $r(C, x)$ starts with $1+12 x$ and has degree at most 4 . We need to count the number of rook placements with 2,3 and 4 rooks.
In case of 2 rooks we get the following.
Placing rooks in rows 1 and 2 , rows 1 and 3, rows 2 and 4, rows 3 and 4 gives 6 possibilities each.

Placing rooks in rows 1 and 4 gives 12 possibilities.
Placing rooks in rows 2 and 3 gives 2 possibilities.
Thus the coefficient at x^{2} in $r(C, x)$ is equal to 38 .
In case of 3 rooks:
Placing rooks in rows $1,2,3$ and in rows $2,3,4$ gives 4 possibilities each.
Placing rooks in rows $1,2,4$ and in rows $1,3,4$ gives 12 possibilities each.
Thus the coefficient at x^{3} in $r(C, x)$ is equal to 32 .
Finally there are 4 possibilities to place 4 rooks.
Answer: $r(C, x)=1+12 x+38 x^{2}+32 x^{3}+4 x^{4}$.
4. The recurrence relation defining the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is given by $a_{n}=a_{n-1}+a_{n-2}$ with the initial conditions $a_{1}=1, a_{2}=2$. Its characteristic equation equals $r^{2}-r-1=0$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$. Thus the general solution of the above recurrence relation is

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

The initial conditions give $\alpha=\frac{5+\sqrt{5}}{10}, \beta=\frac{5-\sqrt{5}}{10}$.
5. a) $G=(V, E)$ where $V=\{a, b, c, d, e\}$ and $E=\{(a, b),(a, c),(b, c),(c, d),(c, e),(d, e)\}$. G has an Euler circuit $a-c-d-e-c-b-a$, but no Hamilton cycle since we can not pass the vertex c twice.
b) $G=(V, E)$ where $V=\{a, b, c, d, e\}$ and $E=\{(a, b),(a, c),(a, d),(b, c),(c, d),(c, e),(d, e)\}$ has a Hamilton cycle $a-b-c-e-d-a$ but no Euler circuit since $\operatorname{deg}(a)=\operatorname{deg}(d)=3$.
6. a) The minimal spanning tree has total weight 33 and consists of the edges:

$$
(a, c) ;(c, f) ;(f, i) ;(f, h) ;(e, h) ;(e, g) ;(d, g) ;(b, e) ;(g, j)
$$

b) The minimal path connecting a and j goes through $a-e-g-j$ and has total weight 16 .
c) Maximal flow has total value 19 and its values on the edges are as follows. (There might exist other options.) $(a, b) \rightarrow 6,(a, c) \rightarrow 6,(a, e) \rightarrow 7,(b, d) \rightarrow 5,(b, e) \rightarrow 1,(c, e) \rightarrow 5,(c, f) \rightarrow 1$, $(d, g) \rightarrow 1,(d, h) \rightarrow 4,(e, g) \rightarrow 4,(e, h) \rightarrow 3,(e, i) \rightarrow 6,(f, h) \rightarrow 0,(f, i) \rightarrow 1,(g, j) \rightarrow 5$, $(h, j) \rightarrow 7,(i, j) \rightarrow 7$. Value $=19$. Minimal cut of capacity 19 is given by $\{a, b, c, d, e, f, h, g\} \cup\{i, j\}$.

