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(1) Let S1 and S2 ⊆ R2 two circles of radii 1 and 2 respectively. Let A := S1∪S2

and consider the following family of subsets of A:

T := {U | U is open with the induced euclidean topology AND 2x ∈ U whenever x ∈ U ∩ S1}

(a) Show that T is a topology on A.
(b) Determine interior, closure, exterior, and boundary of S1 in the topol-

ogy T .
(c) Say for which a ∈ A the singlet {a} is closed in the topology T .
(d) Determine if the topological space (A, T ) is connected.
(e) Determine whether the topological space (A, T ) is compact.
(f) Determine whether the topological space (A, T ) is Hausdorff (T2). [30 points]

Solution:
(a) Both A and ∅ are open in the induced Euclidean topology (since it is
a topology). For the empty set, the second requirement is void, for A it
is trivially satisfied, so we have that A and ∅ are open. Let now {Uα}α∈A
an arbitrary family of element of T since they are open in the induced
Euclidean topology we have that

⋃
Uα is open in the Euclidean topology.

Suppose now that x ∈ S1 belongs to
⋃
Uα then there is an α ∈ A such that

x ∈ Uα. By the definition of T we have that 2x ∈ Uα ⊆
⋃
Uα. So

⋃
Uα

is open in T . It remains to show that finite intersection of open sets are
open. We can limit ourselves to consider the case of the intersection of two
elements, the general situation will follow by induction. Thus let U and
V in T , as they are open in the induced Euclidean topology we have that
U ∩ V is open in the induced Euclidean topology. Hence we just need to
check that it satisfies the second requirement for T . Supoose that x ∈ S1

is in U ∩ V , then x belongs both to U and V , and, by the definition of T
we also have that 2x ∈ U ∩ V . Therefore U ∩ V is open.
(b) Let U a non empty open set. If U ∩ S1 6= ∅ then clearly U ∩ S2 6= ∅.
In particular non empty open sets cannot be entirely contained in S1. We
deduce that the interior of S1 is empty. On the other side we have that
the closure of S1 is the whole S1. In fact we can show that S2 = A\S1

is open in T . For any y ∈ S2 consider the ball B 1
2
(y) ⊆ R2. We have

that B 1
2
(y) ∩ S1 = ∅ and so we can write S2 =

⋃
y∈S2

B 1
2
(y) ∩ A. The

sets B 1
2
(y)∩A are clearly open in A with respect to the induced Euclidean

topology. In addition, as they do not intersect S1 they trivially satisfy the
second condition for T . So they are open in T and S2 is open as it is a
union of open sets. The exterior of S1 is

Ext(S1) = A\S1 = S2.

The boundary of S1 is

∂S1 = S1\ Int(S1) = S1.

(c) If a ∈ S1, then we have that {a} is closed. In fact U := A\{a} is open in
the Euclidean topology, and if x ∈ S1 ∩ U , 2x 6= a, so 2x ∈ U . Conversely
if a does not belong to S1 then {a} cannot be closed. Otherwise we would
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have that A\{a} is open. Since a ∈ S2 we can write a = 2b with b in S1.
We then will have that b ∈ A\{a} but 2b = a /∈ A\{a}. Thus A\{a} does
not satisfy the second requirement for membership to T .
(d) The space A is connected in the given topology. In order to see this
we begin observing that, as T is coarser than the Euclidean topology we
have that the subspace topology induced by T on S1 and S2 is coarser
than the induced Euclidean topology. Both S1 and S2 are connected with
respect to the Euclidean topology as they are homoemorphic to S1, since
connectedness is stable with respect to taking coarser topology we deduce
that S1 and S2 are connected with respect of T . Suppose now that f :
A → {0, 1} is a continuous map where {0, 1} is endowed with the discrete
topology. We want to show that this is constant. Since the spaces Si’s
are connected we have that, for every x ∈ S1, f(x) = f(0, 1) and for every
y ∈ S2, f(y) = f(0, 2). We will show that f(0, 1) = f(0, 2), which will imply
that f is constant. By the continuity of f we have that f−1({f(0, 1)}) is
an open set containing (0, 1). The definition of T yields that (0, 2) ∈
f−1({f(0, 1)}) and so f(0, 2) = f(0, 1).
(e) The topology T is coarser than the induced Euclidean topology and
compactness is stable with respect to taking coarser topologies. The set
A is closed and bounded with respect to the Euclidean topology, so it is a
compact topological space with the induced euclidean topology. We deduce
that A is compact with respect to T .
(f) The space A with this topology is not Hausdorff. In fact let x ∈ S1 and
set y = 2x. Given any two open sets Ux and Uy with x ∈ Ux and y ∈ Uy
for the definition of the topology T we have that y ∈ Ux. So Ux ∩ Uy 6= ∅.
One might also have observed that from (c) not all singlets in A are closed,
but in an Hausdorff topological space all singlets are closed.

(2) Let X any topological space and let A ⊆ X a subset. Consider the topolog-
ical space Y := X/A obtained from X by collapsing A, and let π : X → Y
the quotient map.
(a) Show that if C ⊆ X is closed and C ∩A = ∅, then π(C) is closed.
(b) Show that if Y is Hausdorff (T2) then A is closed.[20 points]

Solution:
(a) Let Z a subset of Y . By the definition of quotient topology we have the
following chain of equivalences

Z is closed ⇐⇒ Y \Z is open

⇐⇒ π−1(Y \Z) is open

⇐⇒ X\π−1(Z) is open

⇐⇒ π−1(Z) is closed.

Thus, to show that π(C) is closed we need to show that π−1(π(C)) is closed.
But if A∩C = ∅ we have that C = π−1(π(C)). In fact we always have the
inclusion C ⊆ π−1(π(C)). Suppose that p ∈ π−1(π(C)). Then we can find
q ∈ C such that π(q) = π(p). But then q is in relation with p. As q ∈ C we
have that q /∈ A and therefore, by the definition of the equivalence relation
used to construct Y , we have that q = p.
(b) We prove the contrapositive statement. Suppose that A is not closed
and let p ∈ A\A, and denote by pA in Y the equivalence class of points
in A, so that we have π(a) = pA for every a ∈ A. Given U and V open
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neighbors of π(p) and pA respectively, we have, by the definition of quotient
topology, that π−1(U) is an open neighbor of p in X. By the choice of p we
have that π−1(U) ∩ A 6= ∅. Therefore we can find a ∈ π−1(U) ∩ A. Then
we have that pA = π(a) ∈ U and U ∩ V is not empty. Therefore Y is not
Hausdorff.

(3) Let X be the space (S2 × S2)\∆S2 , where ∆S2 is the diagonal.
(a) Show that X is homotopy equivalent to S2.
(b) Let Z/2Z act on X by exchanging the coordinates. Compute the

fundamental group of the quotient space X/(Z/2Z). [20 points]

Solution:
(a) Consider Y := {(x,−x) |x ∈ S2} ⊆ X ⊆ S2 × S2. Let p1 : S2 × S2 → S2
the projection on the first factor. The restriction of p1 to Y is clearly
bijective, and since it is the restriction of a surjective open map this is
also open, so it is an homeomorphism. We will show that Y is a strong
deformation retract of X. Let i : Y ↪→ X the natural inclusion and r :
X → Y to be the restriction of p1 to X. Clearly we have that r ◦ i = idY .
The map H : X × I → X defined by

H((x, y), t) =

(
x,
−tx+ (1− t)y
‖ − tx+ (1− t)y‖

)
yields an homotopy between idX and i ◦ r. In fact, as y 6= x the segment
joining y and −x does not pass through the origin, and the map is con-
tinuous. We have to check that the target is effectively X. If we cut the
sphere with the plane through x, −x and y that are non co-linear points
we see that H moves y toward −x toward the smallest angle between the
lines identified by y and x. This angle is strictly smaller than π so we see

that −tx+(1−t)y
‖−tx+(1−t)y‖ cannot be equal to x.

(b) Observe thatX is path connected, and hence also the quotientX/(Z/2Z)
is path connected. Thus the fundamental groups do not depends from the
base points. We know from the lectures that S2 is simply connected. By
the homotopy invariance of the fundamental group we have that X is also
simply connected. The action of Z/2Z on X is a covering space action: let

(x, y) ∈ X and consider U := (Bρ(x)×Bρ(y))∩X with ρ < d(x,y)
3 where d is

the euclidean distance in R3. Let 1+U be the image of σ(1,−) over U , that
is 1+U = {(y, x) | (x, y) ∈ U}. We have that U∩(1+U) = ∅. By the unicity
of the universal cover we have that the quotient map π : X → X/(Z/2Z) is
the universal cover of X/(Z/2Z). We deduce that π1(X/(Z/2Z)) ' Z/2Z.

(4) Let X be a topological spaces and suppose that X can be written as the
union of two simply connected open sets intersecting in a path connected
space. Show that X is simply connected. [10 points]

Solution:
This is a direct application of SVK: we have that all the assumptions of the
statement are verified as X can be written as U ∪ V with U and V open
and U ∩ V path connected. In addition, as U and V are simply connected,
they are in particular path connected, so X is path connected and the
fundamental group of X (and those of U , V , and U ∩ V ) does not depend
from the base point. SVK theorem yields that

π1(X) ' π1(U) ∗π1(U∩V ) π1(V ),
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which, independently of what π1(U ∩V ) is, is the quotient of π1(U)∗π1(V )
which is clearly trivial as U and V are simply connected. So π1(X) is
trivial.

(5) (a) Define the universal covering space of a topological space.
(b) Give a sketch of the construction of the universal covering for a con-

nected and locally simply connected space.[20 points]


