Tentamensskrivning i Topologi, MM8002/SF2721 7.5 hp 2019-05-23

- (1) Let $X \subseteq \mathbb{R}^3$ be the subspace $X := \{(x, y, z) \in \mathbb{R}^3 \mid xyz \ge 0\}$
 - (a) Determine whether X is open in \mathbb{R}^3 .
 - (b) Determine whether X is closed in \mathbb{R}^3 .
 - (c) Determine the boundary of X, ∂X .
 - (d) Determine whether X is connected.
 - (e) Determine whether the interior of X, Int(X), is connected.
 - (f) Show that X is contractible.

[30 points]

[25 points]

[15 points]

- (2) Let I = [0, 1] with the usual (Euclidean) topology. Let also $I_0 = (\frac{1}{3}, \frac{2}{3})$, and denote by $Y := I/I_0$ the space obtained from I collapsing I_0 to a point. Finally denote by $Z := I/\overline{I_0}$ the space obtained from I by collapsing the closure of I_0 to a point.
 - (a) Determine whether Y is connected.
 - (b) Determine whether Y is compact.
 - (c) Determine whether Y is Hausdorff (T_2) .
 - (d) Show that Z is homeomorphic to I.
 - (e) Determine whether Y and Z are homeomorphic.
- (3) Let G subgroup of $GL_3(\mathbb{R})$ given by matrices of the form

$$\left(\begin{array}{rrrr}1 & x & y\\0 & 1 & z\\0 & 0 & 1\end{array}\right).$$

Endow G with the subset topology induced by the Euclidean topology in $\mathbb{R}^9.$

- (a) Show that G is a topological group which is homemorphic to \mathbb{R}^3 (with the Euclidean topology) but not isomorphic $(\mathbb{R}^3, +)$.
- (b) Let Γ be the subgroup of G constituted by matrices with integer coefficient. Then Γ acts on G by left multiplication. Show that the quotient map $G \to G/\Gamma$ is a covering space. (**Hint:** it might be easier if you identify G with \mathbb{R}^3).
- (4) Let X be the connected sum of two tori minus one point, that is

$$X := (T \ \sharp \ T) \backslash \{P\}.$$

- Compute the fundamental group of X. [10 points]
- (5) Formulate and prove the homotopy invariance of the fundamental group. [20 points]