MATEMATISKA INSTITUTIONEN	Tentamensskrivning i
STOCKHOLMS UNIVERSITET	Topologi, MM8002/SF2721
Avd. Matematik	7.5 hp
Examinator: Sofia Tirabassi	$2019-05-23$

(1) Let $X \subseteq \mathbb{R}^{3}$ be the subspace $X:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y z \geq 0\right\}$
(a) Determine whether X is open in \mathbb{R}^{3}.
(b) Determine whether X is closed in \mathbb{R}^{3}.
(c) Determine the boundary of $X, \partial X$.
(d) Determine whether X is connected.
(e) Determine whether the interior of $X, \operatorname{Int}(X)$, is connected.
(f) Show that X is contractible.
(2) Let $I=[0,1]$ with the usual (Euclidean) topology. Let also $I_{0}=\left(\frac{1}{3}, \frac{2}{3}\right)$, and denote by $Y:=I / I_{0}$ the space obtained from I collapsing I_{0} to a point. Finally denote by $Z:=I / \overline{I_{0}}$ the space obtained from I by collapsing the closure of I_{0} to a point.
(a) Determine whether Y is connected.
(b) Determine whether Y is compact.
(c) Determine whether Y is Hausdorff $\left(T_{2}\right)$.
(d) Show that Z is homeomorphic to I.
(e) Determine whether Y and Z are homeomorphic.
(3) Let G subgroup of $G L_{3}(\mathbb{R})$ given by matrices of the form

$$
\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) .
$$

Endow G with the subset topology induced by the Euclidean topology in \mathbb{R}^{9}.
(a) Show that G is a topological group which is homemorphic to \mathbb{R}^{3} (with the Euclidean topology) but not isomorphic $\left(\mathbb{R}^{3},+\right)$.
(b) Let Γ be the subgroup of G constituted by matrices with integer coefficient. Then Γ acts on G by left multiplication. Show that the quotient map $G \rightarrow G / \Gamma$ is a covering space. (Hint: it might be easier if you identify G with \mathbb{R}^{3}).
(4) Let X be the connected sum of two tori minus one point, that is

$$
X:=(T \sharp T) \backslash\{P\} .
$$

Compute the fundamental group of X.
(5) Formulate and prove the homotopy invariance of the fundamental group.

