
MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Beräkningsmatematik
Kursledare: Anders Mörtberg
Examinator: Lars Arvestad

Tentamensskrivning i
DA2005 Programming techniques
7.5 hp
2021-03-12

• Part A has multi-choice questions with at least one correct answer. The wrong answer or the wrong
number of answers both give zero points.

• You need to pass Part A (4 correct answers on 8 questions) for your Part B to be graded.
• Part B is a number of problems worth a total of 12 points, which are to be solved using Python 3 code.
• The answers to Part B are handed in as a single .py �le named like anonymouscode.py where anonymouscode

is the code given to you when registering for the exam in Ladok. You must also write your personal code
in a comment at the top of your Python �le. You must not write your own name anywhere in the �le!

• Carefully use the identi�ers for functions, methods, and variables as requested in the problems.
• No import statements may be used unless mentioned and requested in the problem. You are free to use

any functions de�ned in the Python standard environment (available at startup), including len , range

and map .
• You should write Python 3 code, and not Python 2.7, for example.
• Resources: You are allowed a ”cheat sheet” for Part A: an A4 paper �lled with as much information as

you like. It can be written/printed on both sides. Part B is open book, so the same rules apply for Part B as
in labs and project.

• Grading thresholds: E: 10, D: 12, C: 14, B: 16, A: 18, out of maximum 20.

Part A: multi-choice questions (1p per question)
1. Which of the following words are speci�cally about error handling?

A. with

B. raise

C. class

D. close

E. except

2. If mylist = ['hej', 1, 5, True, 3, 9] , then what is mylist[-3] ?

A. None

B. 5

C. 3

D. True

E. None of the above, because you cannot use negative index for lists.

3. Which of the following is/are reserved words in Python?

A. class

B. instance

C. if

D. print

E. __init__

1



4. What claims are true?

A. Lists are immutable.
B. (1,2,3) is a list with three elements.
C. Strings can be keys in a dict .
D. Strings can be values in en dict .
E. There is a type char for characters in Python.

5. What is the result of list(filter(lambda s: s[0].lower()=='a', ['Hej', 'apan', 'heter', 'Anders'])) ?

A. []

B. ['Hej', 'apan', 'heter', 'anders']

C. ['apan']

D. ['apan', 'anders']

E. ['apan', 'Anders']

6. Given the function below, which alternatives returns True ?
A. f(True)

B. f(y=False)

C. f(False,False)

D. f(True,False)

E. f()

def f(x=True ,y=True):
return ((x and y) or (not x and not y))

7. Given the code below, which alternatives results in an exception?
class A:

x1 = 1

def f1(self):
return "f1 of A"

class B(A):
def f2(self):

x2 = 3
return "f2 of B"

class C(B):
def f3(self):

return "f3 of C"

c = C()

A. print(c.f1())

B. print(c.f2())

C. print(c.f3())

D. print(c.x1)

E. print(c.x2)

8. What is printed by the code on the right?

A. [1, 2, 3]

B. []

C. [1, 2, 3, 3, 2, 1]

D. [-1, -2, -3]

E. [3, 2, 1]

def f(mylist):
if mylist != []:

x , t = mylist [-1] , mylist [:-1]
return [x] + f(t)

else:
return mylist

print(f([1,2,3]))

2



Part B: coding problems (2p per problem)
Note: you may use the random module in this part, so your solution �le can contain import random .

9. Implement a class Dice that represents six-sided dice and their outcomes. The class should have two
methods:

• roll_die() : returns the outcome from a dice roll

• roll_dice(n) : returns the outcome (i.e., the sum) from rolling n dice.

Tests:
[In] : d = Dice()
[In] : print(d.roll_die ())
[Out]: 2
[In] : print(d.roll_dice (2))
[Out]: 7
[In] : print(d.roll_dice (20))
[Out]: 74

Note: as dice rolls are random, you are likely to get other outcomes when trying the tests.

10. Write a function roll_two_dice(n_times) that takes a positive number n_times (i.e., n_times > 0 ), and with
the help of list comprehension returns a list with the outcomes of n_times dice rolls (using the Dice class).
Note: for full credit, you must use the Dice class and a list comprehension. If n_times is not a positive
number, then an exception should be raised by the function.
Tests:

[In] : print(roll_two_dice (10))
[Out]: [9, 2, 7, 2, 9, 7, 8, 10, 3, 5]

Notes: since dice rolls are random, you may get other outcomes when testing.

11. Write a function result_of_dice_rolls(n) that takes a positive number n and presents the result of throws
with two dice (using the Dice class) in a table. Each line shows one outcome and, in percent, what share
of rolls the outcome corresponds to.
Hint: use roll_two_dice from the problem above.
Example output:

2 2.4%
3 6.1%
4 7.9%
5 11.6%
6 13.5%
7 16.7%
8 14.0%
9 10.3%
10 8.9%
11 6.5%
12 2.1%

Note: since the result is random, you will get di�erent output than the example above.

12. Given a dictionary d from strings to numbers, write a function print_right_aligned(d) that prints a table
with key/value pairs on each line Both keys and values should be right-aligned.
For example, { 'hej': 12 , 'hopp': 10101 , 'a': 1 } should be printed like:

hej 12
hopp 10101

a 1

3



13. We de�ne a board game over boards with k × k squares, k > 1. Every square has points, which are given
as nested lists (k lists of length k). You put down markers on the square corners and get a score as the sum
of the points for the 1––4 squares a marker is on. The corners are indexed from 0 to k , see Figure 1!
Write a function best_corner(b) that returns the best corner on board b to put the �rst marker on, and the
score you get from that corner. If there are several corners with the same score, then it does not matter
which of them you return.
Hint: It is su�cient to only consider the inner corners of the board, all covering four squares.













































































O.O 0,1 0.2 0.3

273
1.0 1,1 1,2 13

11 45
2,0 2,1 2,2 2.3

8 9 6
3.0 3.1 3,2 3,3

 

Figure 1: Board for problem 13 corresponding to [[2, 7, 3], [11, 4, 5], [8, 9, 6]] . Coordinates are shown
with black number pairs in the corners and square points are given with red numbers. The best placement of a
marker is coordinate (2, 1) since it yields score 11 + 4 + 8 + 9 = 32.

Tests:
[In] : board0 = [[0, 0], [0, 1]]
[In] : corner , score = best_corner(board0)
[In] : print(corner , score)
[Out]: (1, 1) 1
[In] : board1 = [[10, 1, 0], [1, 1, 0], [0, 0, 0]]
[In] : corner , score = best_corner(board1)
[In] : print(corner , score)
[Out]: (1, 1) 13
[In] : board2 = [[0, 0, 0], [0, 1, 10], [0, 1, 1]]
[In] : corner , score = best_corner(board2)
[In] : print(corner , score)
[Out]: (2, 2) 13
[In] : print(best_corner ([[2, 7, 3], [11, 4, 5], [8, 9, 6]]))
[Out]: ((2,1), 32)

14. Implement a class Board for the board game in problem 13. The class should have a constructor with
parameters for both board and a list of already chosen positions, because that information should be stored
in the objects. Add a method best_valid_corner that returns the best-scoring corner, while avoiding the
corners already chosen (i.e., do not return a position where there is already a marker).
You can assume that this method is not called when all corners are already taken.
Hint: You cannot limit yourself to the inner corners, because they may be taken already.

4



Tests:
board0 = [[0 ,0] ,[0 ,1]]
board1 = [[10,1,0], [1, 1, 0],[0,0,0]]
board2 = [[0,0,0], [0,1, 10], [0, 1, 1]]
board3 = [[2,7,3],[11, 4, 5],[8, 9, 6]]

b0 = Board(board0 , [])
b1 = Board(board1 , [])
b2 = Board(board2 , [])

assert b0.best_valid_corner () == (1, 1)
assert b1.best_valid_corner () == (1, 1)
assert b2.best_valid_corner () == (2, 2)

b0 = Board(board0 , [(1,1)])
b1 = Board(board1 , [(1,1)])
b2 = Board(board2 , [(2,1), (2,2)])

assert b0.best_valid_corner () in [(1, 2), (2, 1), (2, 2)]
assert b1.best_valid_corner () in [(0, 1), (1, 0)]
assert b2.best_valid_corner () in [(1, 2), (2,3)]

5


