MATEMATISKA INSTITUTIONEN Tentamensskrivning i

STOCKHOLMS UNIVERSITET DA2005 Programming techniques
Avd. Berakningsmatematik 7.5 hp
Kursledare: Lars Arvestad 2021-04-21

Examinator: Lars Arvestad

Part A has multi-choice questions with at least one correct answer. The wrong answer or the wrong
number of answers both give zero points.

You need to pass Part A (4 correct answers on 8 questions) for your Part B to be graded.
Part B is a number of problems worth a total of 12 points, which are to be solved using Python 3 code.

The answers to Part B are handed in as a single .py file named like anonymouscode.py where anonymouscode
is the code given to you when registering for the exam in Ladok. You must also write your personal code
in a comment at the top of your Python file. You must not write your own name anywhere in the file!

Select identifiers for functions, methods, and variables as requested in the problems.

No import statements may be used unless mentioned and requested in the problem. You are free to use
any functions defined in the Python standard environment (available at startup), including len, range
and map .

You should write Python 3 code, and not Python 2.7, for example.

Resources: You are allowed a “cheat sheet” for Part A: an A4 paper filled with as much information as
you like. It can be written/printed on both sides. Part B is open book, so the same rules apply for Part B as
in labs and project.

Grading thresholds: E: 10, D: 12, C: 14, B: 16, A: 18, out of maximum 20.

Part A: multi-choice questions (1p per question)

1.

mo0w»

Which of the following is assert to be used for?

Flow control

User interaction

Error finding

Making Python code faster

Nothing, assert is not part of Python.

2. Which of the following words are specifically about working with files?

mo 0w >

open
for
exit
close

continue

3. What is the result of [[x[i] for x in [[1, 2, 31, [4, 5, 611 1 for i in range(3)] ?

moow»

[le, 1, 21, [o, 1, 211
[]

L, 2, 31, [4, 5, 611
[[1, 41, [2, 51, [3, 611
[1, 2, 3, 4, 5, 61

4. What values are printed by the code on the right?

a' and 'b’

fo, 1, 21 and [3, 4, 5] d={ 'a': [0, 1, 21, 'b': [3, 4,

for x in d:

A

B

C. 'a', [e, 1, 21, 'b' and [3, 4, 5]
D. {'a':0[0, 1,21, 'b': [3, 4, 51} print (dlxD)
E

. None, you cannot have lists in dictionaries.

5. Consider the code on the right, what is returned when evaluating the expression f() ?

A. 10 a =2
B. 11 b =3
c = 4
C. 9
def f(a = 1):
D. None b =25
E. s return (a + b + ¢)
6. Given the code below, what is the value assigned to result ?
None mylist = [['how'], '[arel', 'you', '"?"']
result = "'
e

for x in mylist:
out = "'
for c in x:
if ¢ not in '[]1"':
out += ¢
result += out

"howareyou?'

"how are you ?'

m O 0w

"howare?'

7. What is returned by the call fen(e) given the definition below?

import random

def fcn(param):
X = 0
while random.random() > 0.5:
if param > x:
x += 1
continue
else:
break
return x

A o

B. 1

C. 2

D. 10

E. It cannot be predicted due to the randomness.

8. Given the function below, what is the result of d([e, [11, [2, 31, [[4, 5111) ?

A o
B. 1 def d(1l):
’ if type(l) == list:
C. 2 return 1 + max(map(d, 1))
else:
D. 3 return 0
E. None

Part B: coding problems (2p per problem)

Note: you may use random in this part.

9.

10.

One assignment in the exam from 2021-03-12 was about implementing a class Dice for six-sided dice. A
possible solution is here:

class Dice:

def roll_die(self):
return random.randint(1,6)

def roll_dice(self,n):
sum = 0
for i in range(n):
sum += self.roll_die()
return sum

Extend the code for pice with a constructor that let us set an attribute number_of_sides , which determines
how many sides the dice has, allowing for other values than 6. The allowed side counts are 4, 6, 8,

12, and 20 . The dice should be six-sided if the user does not give a specific number. If the user gives a
number which is not allowed (i.e., not 4, 6, 8, 12, or 20) then an exception should be raised.

The methods roll_die and roll_dice should also be modified so that they work with the new dice sizes.
Examples: The code

d = Dice()
print(d.roll_die())
print(d.roll_dice(2))

t20 = Dice(20)
print(t20.roll_die())
print(t20.roll_dice(2))

may yield the following output:

4
7

16
27

Note: as dice rolls are random, you will probably get other output than in the example.

Inspired by the code for Dice , write a class ArbDice (for “arbitrary dice”) where the user can also specify
what values the sides should have. This is done by providing a list with as many elements as there are sides
on the dice. A dictionary should associate side numbers (a number between 1 and number_of_sides) with
corresponding side values. If the constructor is called without a list of values, then 1 to number_of_sides
should be used as values in the dictionary.

The methods roll_die and roll_dice should be modified to work with arbitrary sides. A suitable excep-
tion should be raised if the user supplies a list with the wrong number of side values.

Example: The code

d4 = ArbDice(4,[10,20,30,40])
print(d4.roll_die())
print(d4.roll_dice(2))

dé = ArbDice()
print(d6.roll_die())
print(d6.roll_dice(2))

may yield the following output:

30
80
1
9

11.

12.

13.

14.

Write a function mask(s1, s2) that takes two strings s2 and s2 and switches letters in s1 for * in the
order they appear in s2 , returned in a new string.

Note: lower or upper case must not make a difference.

Example:
[In] : print(mask('Hello, how are you Anders?', 'ehoaar'))
[Out]: Hx1lo, *xw *re you #*ndexs?
[In] : print(mask('Hello, how are you Anders?', 'H,HAAR?A'))

[Out]: xello* *ow *re you #*ndexs*
In the first example, note that o in you is not switched out since it was already used for o in how .

A simple method for text encryption is to write the characters of a text into a matrix with a set number
of columns. All characters are filled in row by row, and then you read out the encrypted text column by
column.

Example: To encrypt 'Secret text' with 3 columns, we create a matrix like this:

'S’ ‘e’ 'c'
'r' 'e' 't!
e Iy e
v ey

The encrypted text is then 'Sr xeettcte' .

Write a function matrix_encrypt(s,cols) where s is a string and cols is a positive integer representing
the number of columns for the matrix, and the encrypted text is returned.

Tests:

[In] : print(matrix_encrypt('Secret text',b3))
[Out]: Sr xeettcte
[In] : print(matrix_encrypt('Secret text',62))
[Out]: Sce eterttx
[In] : print(matrix_encrypt('Secrettext',5))
[Out]: Stetcerxet

Note: if the length of s isnotevenly divisible by cols , then there should not be spaces or other characters
at the end of the encrypted string.

Write a function matrix_decrypt(s,cols) for matrix decryption. That is, given an encrypted string s and
an integer cols , return the clear-text.
Tests:

[In] : print(matrix_decrypt('Sr xeettcte',3))
[Out]: Secret text
[In] : print(matrix_decrypt('Sce eterttx',b2))
[Out]: Secret text
[In] : print(matrix_decrypt('Stetcerxet',5))
[Out]: Secrettext

Write a higher-order function encrypt_file(f,enc) that takes a string f and an encryption function
enc . Every line of the file f.txt should be encrypted with enc and the result should be written to
f_encrypted. txt .

Example: If the file myfile.txt contains

secret texts
writteninmy
secret files

then the expression encrypt_file('myfile',lambda x: matrix_encrypt(x,3)) should put

sr xeettctes
wtnmrtiyien
sr leefectis

into the file myfile_encrypted.txt .

