
MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Beräkningsmatematik
Examinator: Lars Arvestad
Lecturer and exam designer: Marc Hellmuth

Tentamensskrivning i
Algoritmer och komplexitet
7.5 hp
2021-03-19

General Information (that was already listed at the homepage)

It is not allowed to share answers!

• You have 2 hours to solve the exam and you get additional 20 minutes to upload your solutions.

• All single pages of your solutions must be clearly marked with your StudentID and name (no anonymity
code).

• Upload your solutions not later than March 19 - 3:20pm at the bottom of the DA3004 homepage":
https://kurser.math.su.se/course/view.php?id=1019 or using the link https://kurser.math.su.se/mod/
assign/view.php?id=61716.

ONLY IN CASE something does not work with the upload, you can also send your solutions via email
to marc.hellmuth@math.su.se.

• In case you have questions during the exam, use the zoom-line https://stockholmuniversity.zoom.us/
j/65349503510

• In total, you can get 100 points and you need to get at least 55 points to pass the exam.

Problem 1 2 3 4 5 6 7 8 TOTAL
Points

1

https://kurser.math.su.se/course/view.php?id=1019
https://kurser.math.su.se/mod/assign/view.php?id=61716
https://kurser.math.su.se/mod/assign/view.php?id=61716
https://stockholmuniversity.zoom.us/j/65349503510
https://stockholmuniversity.zoom.us/j/65349503510


Problem 1 (Runtime) 7+5+5=17p

(a) In big-O analysis we sometimes use n2 ≤ 2n for all integers n ≥ 4. Prove this statement.

(b) Show that T (n) = (n + 2)3 ∈ Θ(n3) (in “big-Theta”).

(c) Consider the following recursive algorithm for computing the sum S(n) =
∑n

i=1 i
3.

S(positive integer n)
1: if n = 1 then return 1
2: else return S(n− 1) + n ∗ n ∗ n.

Determine the runtime in big-O notation (best possible bound) assuming that basic operations
as return, addition and mulitplication can be done in constant time. Explain your results.

2



Problem 2 (Complexity) 5+5+5=15p

Suppose we are given a decision problem A that has as one of the inputs an arbitrary graph. Let
U denote the set of all undirected graphs and D denote the set of all directed graphs. Note, we can
consider undirected graphs as a special case of directed graph by replacing all edges {u, v} by two arcs
(u, v), (v, u) and thus, we can assume that U ⊆ D.

(a) Assume we have shown NP-hardness of A by reduction from 3-SAT by constructing a special
directed graph G ∈ D\U . Explain shortly, if this implies that A is NP-hard for the class of graphs
in U?

(b) Assume we have shown NP-hardness of A by reduction from 3-SAT by constructing a special
undirected graph G ∈ U . Explain shortly, if this implies that A is NP-hard for the class of graphs
in D?

(c) Briefly discuss the following statement: There is no polynomial-time algorithm for NP-hard pro-
blems.

3



Problem 3 (Trees) 5+10=15p

A tree is a connected undirected acyclic graph.

(a) How many spanning trees has the following graph? Shortly explain your results.

(b) Recap Kruskal’s algorithm.

Kruskal(G = (V,E), w : E → R) // m = |E|
1: sort edges such that w(e1) ≤ w(w2) · · · ≤ w(em)
2: F = ∅, T = (V, F )
3: for i = 1, . . . ,m do
4: if (V,E ∪ {ei}) is acyclic then
5: T = (V,E ∪ {ei})
6: return T

Explain, in words, how to use Kruskal’s algorithm to compute the number of connected compo-
nents in an undirected graph.

4



Problem 4 (Shortest Paths) 10p

Recap the following algorithm to compute the length of a shortest paths between a source vertex s and
the other vertices.

Bellmann-Ford(digraph G, weight function w, sourse s)
1: for each vertex v of G do
2: v.d =∞
3: s.d = 0
4: for i = 1, . . . , |V | − 1 do
5: for every edge (u, v) ∈ E do
6: if v.d > u.d + w(u, v) then
7: v.d = u.d + w(uv)

Explain shortly for which type of weighting functions Bellmann-Ford computes a correct solution
and provide a minimal example (a digraph without loops and with the fewest number of vertices)
that shows that the algorithm Bellmann-Ford may not work if we have as input a directed graph
with arbitrary weighting function. To this end, apply Bellmann-Ford on your example, provide the
results for all intermediate steps and show where the algorithm fails.

5



Problem 5 (Greedy and Matroids) 5+7=12p

Recall that in the Knapsack problem, we are given two things. First a list of n items i1, . . . , in, where
item ij has positive value vj and positive weight wj . Second a positive capacity C which is the maximum
weight that can be carried in the knapsack. The items are indivisible so that we must either place the
entire item in the knapsack or not place it in the knapsack. Our goal is to maximize the sum of the
values of all the items that are placed in the knapsack.

(a) Define the independence system (E,F) that describes this problem and also prove that (E,F) is
an independence system.

(b) Prove that a greedy algorithm will in general not optimally solve this problem by showing that
(E,F) is not a matroid.

6



Problem 6 (Dynamic Programming) 5+10=15p

Given an ordered list of n ≥ 1 strictly positive integers k1, . . . , kn the product-sum is the largest sum
that can be formed by multiplying adjacent elements in the list. Each element can be multiplied with
at most one of its neighbors. For example, given the list 1, 2, 3, 1 the product sum is 8 = 1 + (2 · 3) + 1,
and given the list 2, 2, 1, 3, 2, 1, 2, 2, 1, 2 the product sum is 19 = (2 · 2) + 1 + (3 · 2) + 1 + (2 · 2) + 1 + 2.

(a) Compute the product-sum of 1, 4, 3, 2, 3, 4, 2

(b) Give a recursive formular for computing the product-sum of the first j elements.

7



Problem 7 (Suffix Trees) 5+5=10p

(a) Argue why for a given string S = s1 . . . sn, where sn = $ 6= si for all i ∈ {1, . . . , n − 1} the root
of a suffix tree has at least two children.

(b) Build the suffix tree for the string S = AABACAB$.

8



Problem 8 (Balanced binary search trees) 6p

What is the best possible asymptotic bound for searching an element in a balanced binary search tree
with n · 2n vertices in a worst case: A1, A2, A3 or A4? Prove your answer.

(A1) O(n · log2(n))

(A2) O(n · 2n)

(A3) O(n)

(A4) O(log2(n))

9


