
Answers and comments to DA3018 exam on 2020-
05-25

1. (a) Here is an attempt:

def find_indices(A):
S = ArrayList()
S.append(0)
for i from 1 to len(A):

if A[i] == 0:
S.append(i+1)

return S

This helper function iterates through the elements of A. In each itera-
tion, there is an if-statement taking O(1) time and a possible addition
of an element to the ArrayList which can be assumed to also take
O(1) time (on average). Since the preparations of creating an Ar-
rayList takes constant time, the helper function’s time complexity is
O(n).

(b) Mergesort on m elements takes O(m logm) time if comparisons take
O(1) time. We work with string comparisons in this assignment, and
although we know there arem strings, there is no obvious way of using
n to limit their length. So a worst-case analysis suggests that the
string comparisons takeO(n) time. The yields a total time complexity
of O(mn logm).

2. (a) Source vertices in a directed graph are recognised by having indegree
0. So we can start by identifying those.
Then we start an adapted DFS that collects all sink-vertices that are
found from a starting sink and returns them.
Here is suggested pseudocode.

def find_sources_and_sinks(G):
sources = find_sources(G)
results = empty_list()
for v in sources:

sinks = find_sinks(v, G)
results.append( (v, sinks) )

return results

def find_sources(G):
sources = empty_list()
for v in G.vertices():

if indegree(v) == 0:
source.append(v)

return sources

def find_sinks(v, G):
for w in G:

w.visited = False
sinks = empty_set()
find_sink_helper(v, sinks)
return sinks
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def find_sink_helper(v, sinks):
v.visited = True
if outdegree(v) == 0:

sinks.append(v)
else:

for u in neighbors(v):
if not u.visited:

find_sink_help(u, sinks)

This algorithm is correct because for each source, we use DFS to
exhaustively search the graph for sinks, and the sinks are collected
in a set which is created empty for each source vertex.

(b) Identifying the source vertices goes in O(|V |) time. Then there is an
adapted DFS and because the added operations are constant time,
that function is O(|V | + |E|). The DFS is applied for each source,
and there are in the worst case O(|V |) sources. Consequently, the
algorithm’s time complexity is O(|V |2 + |V | × |E|).

3. Phone numbers lookup. Please note that there is not One True Answer
to this question. You do not need to make the same assumptions as I do,
but they should be reasonable and based on what we discuss in the course
and common computer knowledge.

I will allocate 15 bytes for a phone number. Longer numbers, if they ex-
ist, are ignored. Names are given 85 bytes for storage. Longer names are
truncated. This means that a phone record takes 100 bytes.

Memory usage analysis is probably easier if I use open addressing for my
hash table, because I can simply give 2 GB of memory to the hash table
and do not need to worry about dynamic allocation of linked lists for
chaining. There will then be 2 GB divided by 100 bytes per slot in the
table results in 2× 107 slots.

To ensure an efficient system, I allow for a 75% load factor. Let n be the
max number of records in my system, so n = 0.75 × 2 × 107 = 15 × 106

is the maximum number of phone records that my system allows without
bad performance. That might just barely work for the Swedish population.

How many lookups per second can we hope for on this server? Say that the-
re are 108 operations per second that we can achieve. Each hash-function
to compute is on a 15-digit phonenumber or shorter. That phone number
can be converted to a 15-digit integer, which in turn fits in a 64-bit inte-
ger (because log2(10

16) < 54) and that means efficient arithmetic. I pick
a very simple hash function: h(x) = (x mod p) mod m, for some prime p4,
m << p << 1016, which can be computed in regular computer arithmetic
using two modulo-operations. This means that the bottleneck for the hash
function is the conversion from a phonenumber string to an integer. Since
there are 15 digits, the conversion should be possible to do in some tens
of CPU-instructions and memory accesses. A rough estimate is that 100
CPU-instructions are needed for hashing and memory access. (Channel
your inner physicist: 10 instructions are too few, and 1000 instructions
does not seem warranted if the conversion needs 10s of instructions). So
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we should be able to compute roughly 108/100 = 106 hash functions per
second.

Summary: I estimate that my phonenumber lookup service can store 15
million records and serve up one million requests per second.

4. (a) Quicksort. I choose to pick the middle element of A as a pivot
element in the partition function. Advantages with that is that it is
trivial and fast to choose, and also results in a good partitioning if
the input is sorted. The obvious disavantage is that it is an arbitrary
choice, so there is no guarantee that we get good partitioning. In fact,
one can construct input that forces O(n2) time complexity with this
partitioning scheme.
In the following, < represents ≺.

def partition(A, left, right):
mid = (left + right) div 2 integer division.
pivot = A[mid]
bottom = left
top = right
while bottom < top:

while A[bottom] <= pivot:
bottom++

while A[top] > pivot:
top--

if bottom < top:
swap(A, bottom, top)

return top // The last element of
the first partition

With a ”fresh” array A, partition is called as partition(A, 0, len
(A)-1). At every iteration, we locate a pair of elements that are
larger and smaller (by ≺) than the pivot element. Since the search
for a large element starts from left and increases, while the search
for a small element starts at right and decreases, we identify pairs
to swap, as long as they are indeed in the ”wrong” order (bottom <
top).
In each iteration of the outer while loop, we either move at least one
of bottom and top, or swap two elements. After a swap, the bottom
and top will ”move” in the next iteration. Hence, at most O(n) swaps
will be made, so the time complexity of partition is O(n).

(b) My partition implementation returns the position with the last ele-
ment that is ≺ or = to the pivot element.

def quicksort(A, left, right):
if left < right:

mid = partition(A, left, right)
quicksort(A, left, mid)
quicksort(A, mid+1, right)

To sort, this function should be called as quicksort(A,0,len(A)
-1)

(c) Visualisation of Quicksort.
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The input array A is
HIF IFKN OFK KFF IKS AIK VBoIS BKH DIF FFF HIF IFKG MAIF IFE OSK MFF

and quicksort(A,0,15) will be called.
Then, a call to partition(A, 0, 15) will be made. The pivot ele-
ment is chosen as BKH and the call will change A to

BKH AIK OFK KFF IKS IFKN VBoIS HIF DIF FFF HIF IFKG MAIF IFE OSK MFF

and top = 1 is returned and assigned to mid. Two recursive calls in
quicksort follows:
• quicksort(A, 0, 1)

• quicksort(A, 2, 15)

I will follow the second call, which starts with a call to partition

(A, 2, 15). It chooses FFF as a pivot element, changes the array
to

BKH AIK FFF DIF IKS IFKN VBoIS HIF KFF OFK HIF IFKG MAIF IFE OSK MFF

and returns 3 as the last element of the first partition.
Two recursive calls in quicksort follows:
• quicksort(A, 2, 3)

• quicksort(A, 4, 15)

I will follow the second call, which starts with a call to partition

(A, 4, 15). It chooses OFK as a pivot element, changes the array
to

BKH AIK FFF DIF IKS IFKN MFF HIF KFF OFK HIF IFKG MAIF IFE OSK VBoIS

The index 13 is returned and quicksort continues recursively into
• quicksort(A, 4, 13)

• quicksort(A, 14, 15)

We can notice that the array is gaining order, even though the par-
titions have not been evenly made at all.

5. A suggested formulation is as follows.

We assume there is a map and an associated list of coordinates with
marked map points, possible also known as good checkpoints. We have
a function d that computes the Euclidian distance on the map between
points. We also assume that is the distance the club refers to, and not a
running distance in the terrain.

The orienteering problem:

• Input: a list L of coordinates, an integer n, and a starting checkpoint
position v ∈ L.
• Output: a subset L′ ⊂ L of size n such that ∀u, v ∈ L′ : d(u, v) ≤ 500,

and
∑

u,v∈L′ d(u, v) is maximised.

In this solution,

• we use the positions given by the orienteering club,
• pick a subset of them,
• ensure they are not too far apart, while also
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• spreading the points out by maximising the sum of pairwise distances.

Since a starting checkpoint is part of the input, we can make sure that
there is some variation in the courses that are output. Hence, we have
fullfilled the wishes from the orienteering club.

Note that there are many possible solutions to the problem.

6. (a) The given grammar is not LL(k), because you cannot consider a
production and know which one to apply. For example, if the next
terminal to parse is VERTEX, then you cannot know (for any fixed
k terminals you look ahead at) decide whether to use the VERTEX

"-"one_or_more_edges production or the VERTEX "-"VERTEX ";"

production.

(b) A possible solution is given in Figure 1. Several rules have been rewrit-
ten such that productions start with a distinct terminal. For example,
the "}" terminal is moved from being last in the starting production,
graph, to being a possible first terminal in arc_list and edge_list.

graph = "digraph" graph_name "{" arc_list ; (* directed *)
| "graph" graph_name "{" edge_list; (* undirected *)
;

arc_list = "}" (* the empty list *)
| arc_list one_or_more_arcs
;

one_or_more_arcs = VERTEX "->" VERTEX more_arcs ;

more_arcs = ";"
| "->" VERTEX more_arcs
;

one_or_more_edges = VERTEX "-" VERTEX more_edges ;

more_edges = ";"
| "-" VERTEX more_edges
;

Figur 1: Suggested solution for 6b. Commenst are written as (* comment here

*).
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