
Facit och kommentarer till tentamen 2017-06-02 i
DA3018

1. (a) Good general sorting algorithms use O(n log n) comparisons, and ot-
her operations are proportional to the number of comparisons. Since
the length of the strings is a parameter and can be substantially lar-
ger than n, we should take sequence length into account. Each string
comparison can be performed in a loop over strings, yielding time
complexity O(L), assuming that we compare character by character
and a character comparison is O(1). In total, O(Ln log n).

(b) Finding the smallest element in a list can be computed by introducing
a variable for the smallest element and then looping through the
list and compare each element against the current-lowest element.
Looping through a list of n elements and performing a limited number
of operaitions is O(n). No sorting is needed.

(c) Constructing a min-heap takes O(n) time for n elements. Checking
the smallest element in a min-heap means accessing the first element
in an array, which is O(1) time. In all, finding the minimum this way
is O(n). Compared to the previous method, this is probably slower
because more work is done: the constant ”hidden” in the O() notation
is larger.

(d) The game Yahtzee is played in 15 rounds by rules in games in Swedish
toy stores, and 13 rounds according to the US rules on Wikipedia.
In each round there are at most three rolls with the dice per player.
Since all parameters of the game is bounded by a constant, simulating
Yahtzee has time complexity O(1).

2. Note that there are n2 elements to be inserted into M . By inserting them
in different order, we get different matrices. There are n2! different per-
mutations of a list of n2 elements, so we can construct n2! different M .

Checking whether a matrix is magic reduces to checking whether each row,
column, and diagonal has the same sum. There are n rows, n columns,
and 2 diagonals in M , and summing up n elements takes O(n) time, so
”checking for magic” takes O(n2) time.

Altogether, the time complexity of the algorithm is O(n2 · n2!). This is a
worst case analysis and we have ignored how many magic squares there
are. We will not need to go through all permutations to find a magic
square.

3. When you store a pair (k, v) in a hash table, the key k is used for two
things, (i) computing the hash value which is the base for placing the
pair in the table, and (ii) comparing elements during lookup to determine
whether you have found your element or not. We always expect collissions
in hash tables, so if one changes the key, the corresponding value will not
be found.

4. (a) Since it is stated that most of the computation time is spent in the
function f , I will ignore other computational costs. The heuristic
needs O(n log n) calls, but that is an asymptotic statement. I will

1



assume that it is exactly n log n calls to f . (In my experience, that is
a very common case.) Furthermore, given that most algorithms give
time complexities with the logarithm in base 2, we assume that is the
case here too.
Our savings will then be 1− n log2 n

n3/2 . For n = 104:

1− 104 log2 10
4/106 ≈ 87% (1)

(b) The drawback with heuristics is that they do not guarantee accuracy
or performance, so whereas we save a lot of time using the heuristic,
we migth not get the optimal/correct answer.

5. For example:

def count_n_reps(t):
if is_leaf(t):

return 1
else:

l = left_subtree(t)
r = rigth_subtree(t)
return 2 * count_n_reps(r) * count_n_reps(r)

This algorithm correctly notes that there is only one way to convert a
single leaf to a string, and if there is a branching, then there are two
ways to proceed (write left tree first, or right tree first, but we are only
counting so this is represented by ”2*”) before choosing a way to convert
the two subtrees. We will have to count how many times the subtrees can
be converted.

6. This problem was unfortunately damaged by an indentation bug. The
pseudocode I wanted to give you is:

frequencies(T): // T is a list of strings
f = new FrequencyTable() // Made-up datastructure
for line in T:

w1 = null
words = line.split() // splits at non-letters
for w2 in words:

w2 = lowercase(w2)
if w1:

f.update(w1, w2) // Increments pair w1
,w2

w1 = w2
return f

The difference is that w1 = w2 is always executed, and not conditionally
on w1.
With the code above, this is my answer:

The algorithmic bug is that the problem statement is about
word-pair frequences in the text, while the pseudocode counts
word-pair frequencies in lines. Hence, a word-pair that straddles
a linebreak will not be counted. For example, applying to the
algorithm to this paragraph would miss the pair (’frequencies’,
’in’).

2



Without a code correction the answer is that w1 is always null, so nothing
happens.

7. I would pick Mergesort.

• All mentioned algorithms have time complexity O(n log n), but for
Quicksort is only expected. Even if choosing the median as pivot
element, which is somewhat expensive to compute, you can end up
with very uneven subproblems and O(n2) time complexity.

• Heapsort: It is positive that Heapsort has a guaranteed time com-
plexity, but we cannot easily implement Heapsort and keep the heap
on disk. A call to heapify will need almost random (as in arbitrary)
file access patterns.

• Both Mergesort and Quicksort partition the input and we can
make use of that when sorting a large file.

• Both Mergesort and Quicksort are recursive algorithms with a
base case of some size. We can choose to use a base-case sorting when
the partitioned data fits the memory in the computer, and choose any
fast and easy-to-use algorithm we want for the base case.

• Mergesort has the advantage that we can decide beforehand how
many and how large partitions the recursive algorithm will make, so
one can make a single pass through the large input file and create
”base-case files”. The recursive portion of Mergesort is then managing
in which order we will merge datafiles as well as file-by-file merging.

• For Quicksort one needs to choose pivot elements. Regardless what
principle we choose, it will mean a lot of rearranging the data from
the input file, and it will a priori be difficult to choose pivot elements
(even with sophisticated methods) such that the base-case files are
appropriately large. However, if that is possible, Quicksort has the
advantage that the final step would only consist of merging files to-
gether.

It seems to me that Mergesort will incur less data access and will be easier
to implement.

8. What we in this question called Recent relative problem is more commonly
known as Lowest common ancestor (LCA)in the CS literature (and some-
times ”Least” or ”Last” instead of ”Lowest”), and Most recent common
ancestor (MRCA) in Biology.

(a) The algorithm starts with two vertices that may or may not be domi-
nating (both are leaves, for example) each other. In the latter case,
a 6= b and a will not dominate b in the loop, so a will be iterati-
vely assigned its parent until a dominates b (in the extreme case a
reaches the root and dominates all vertices. In the following, b will
be assigned to its parent vertex, until it reaches a and the while loop
ends.
The return value, a equal to b, is a recent relative (or LCA) because
this is the first vertex to dominate both starting vertices.

3



(b) The algorithm will iteratively call parent until the recent relati-
ve (LCA) is found. For each call, a comparison (!=) and a call to
dominates is done. The comparison should be O(1) in a reaonable
computational model and if vertices in the tree have integer identi-
fiers such that all children have a larger integer than a parent, then
dominates is also O(1). Solutions stating that dominates take O(n)
are accepted.
One can then note that if there are n vertices in T , then the LCA
is computed in O(n) time, because there are at most O(n) calls to
parent. One can also note that if the LCA is at height h, defined
as the number of edges above a and b, then the time complexity is
O(h).

4


