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1. Determine the value of the integral

ˆ ∞
0

1

(1 + x2)3
dx.

Solution: First note that the integrand is an even function. Hence,

ˆ ∞
0

1

(1 + x2)3
dx =

1

2

ˆ ∞
−∞

1

(1 + x2)3
.

We rewrite the latter integral as the contour integral of the function f(z) = 1
(1+z2)3 along a counter-

clockwise parametrization of the contour Cρ = [−ρ, ρ] ∪ C+
ρ , where C

+
ρ denotes the upper half of the

circle of radius ρ centered at zero. Thus

ˆ ∞
−∞

1

(1 + z2)3
dx = lim

ρ→∞

ˆ
Cρ

f(z)dz − lim
ρ→∞

ˆ
C+

ρ

f(z)dz.

Moreover, the second limit on the right-hand side is zero since f(z) is the quotient of two polynomials
where the degree of the numerator is 0 and the degree of the denominator is 6, and 6− 0 ≥ 2. We are
going to calculate the remaining integral over Cρ by using the residue theorem. The denominator of
f(z) can be written (z − i)3(z + i)3 and, hence, f has two poles (each of order three), namely −i and
i, out of which only i lies inside Cρ (for su�ciently large ρ). The residue of f at i is given by

Res(f ; i) = lim
z→i

1

2

d2

dz2

[
(z − i)3f(z)

]
= lim
z→i

1

2

d2

dz2

[
1

(z + i)3

]
= lim
z→i

1

2

12

(z + i)5
=

3

16i

(see Theorem 1 on p. 310 in the course book). Thus

ˆ ∞
0

f(x)dx =
1

2

ˆ ∞
−∞

f(x)dx =
1

2
lim
ρ→∞

2πiRes(f ; i) =
3π

16
.

2. (a) Determine the order of the pole of f(z) = 1
(sin z+z)2 at z = 0.

(b) Assume that the analytic function f(z) has a pole of order m at the point z0. Prove that f
′(z) has

a pole of order m+ 1 at z0.

Solution: (a) The function g(z) = (sin z + z)2 has derivatives

g′(z) = 2(sin z + z)(cos z + 1),

g′′(z) = 2(cos z + 1)2 + 2(sin z + z)(− sin z + 1),

and, hence, g(0) = 0, g′(0) = 0, g′′(0) = 8 6= 0. Thus g has a zero of order two at z = 0. Consequently,
f = 1/g has a pole of order two at z = 0.
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(b) It is clear that f ′ is de�ned and analytic in a punctured neighborhood of z0 as f is. If f has a pole
of order m at z0 then f has a Laurent expansion

f(z) =

∞∑
j=−m

aj(z − z0)j

around z0 with a−m 6= 0. Di�erentiating yields

f ′(z) =

∞∑
j=−m

jaj(z − z0)j−1 =

∞∑
j=−m−1

(j + 1)aj+1(z − z0)j ,

and the latter is a (the unique) Laurent expansion of f ′ around z0. Its coe�cient with the smallest
index is −ma−m 6= 0 corresponding to (z − z0)−(m+1). Hence, f ′ has a pole of order m+ 1 at z0.

3. Let γ be a directed smooth curve with initial point α and terminal point β. Show that

ˆ
γ

z dz =
β2 − α2

2
.

Which result does this yield if γ is a closed curve? Give an alternative explanation for the result for a
closed curve.

Solution: As γ is a smooth curve, we may choose a smooth parametrization z(t), t ∈ [0, 1], such that
z(0) = α and z(1) = β. Then

ˆ
γ

z dz =

ˆ 1

0

z(t)z′(t) dt =
1

2

ˆ 1

0

d

dt
z2(t)dt =

1

2
z2(t)

∣∣∣1
t=0

=
z2(1)− z2(0)

2
=
β2 − α2

2
.

For a closed curve γ we have α = β, that is,
´
γ
z dz = 0. This follows also from Cauchy's integral

theorem as z is entire (in particular analytic inside and on γ).

4. Calculate all Laurent series expansions of the function f(z) = 1
2z2+4z−6 centered at z0 = 1.

Solution: The denominator can be rewritten 2(z−1)(z+3). Hence, f has singularities at 1 and −3 and
is analytic otherwise. Hence we have two Laurent expansions centered at 1, namely one for |z − 1| < 4
and one for |z − 1| > 4. In order to compute them we rewrite f(z) in partial fractions,

f(z) =
1

8(z − 1)
− 1

8(z + 3)
. (1)

Case 1 (|z − 1| < 4): Here

1

8(z + 3)
=

1

8

1

4− (1− z)
=

1

32

1

1− 1−z
4

=
1

32

∞∑
k=0

(
1− z

4

)k
=

1

32

∞∑
k=0

(
− 1

4

)k
(z − 1)k

as | 1−z4 | < 1. Thus (1) gives

f(z) =
1

8
(z − 1)−1 − 1

32

∞∑
k=0

(
− 1

4

)k
(z − 1)k.

Case 2 (|z − 1| > 4): Here

1

8(z + 3)
=

1

8

1

z − 1

1

1− 4
1−z

=
1

8

1

z − 1

∞∑
k=0

(
4

1− z

)k
=

1

8

∞∑
k=0

(−4)k(z − 1)−k−1.
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This yields

f(z) = −1

8

∞∑
k=1

(−4)k(z − 1)−k−1 = −1

8

∞∑
k=0

(−4)k+1(z − 1)−k.

5. (a) Use Cauchy's integral formula to determine the value of

‰
|z|=2

cos z

z2 − 5z + 4
dz.

(b) Suppose that f is analytic inside and on the unit circle |z| = 1 and satis�es |f(z)| ≤ M for all z
with |z| = 1. Verify that |f ′(i/2)| ≤ 4M holds.

Solution: (a) The integrand can be written as g(z)/(z − 1), where g(z) = cos z
z−4 is analytic inside and

on the given contour. Hence

‰
|z|=2

cos z

z2 − 5z + 4
dz =

‰
|z|=2

g(z)

z − 1
dz = 2πig(1) = −2

3
cos(1)πi

by Cauchy's formula.

(b) We apply Cauchy's formula for the derivative and obtain

|f ′(i/2)| =
∣∣∣∣ 1

2πi

˛
|z|=1

f(z)

(z − i/2)2
dz

∣∣∣∣ ≤ 4
M

2π
2π = 4M,

where we have used that the length of the contour equals 2πi and that for |z| = 1 we have

|z − i/2| ≥ |z| − |i/2| = 1− 1/2 = 1/2.

6. Find a conformal mapping of the �rst quadrant onto itself which maps the point 1 + i to the point
2 + i.

Solution: We can make life easier by dealing with the upper half-plane. The mapping f(z) = z2 maps
the �rst quadrant onto the upper halfplane, and it maps 1 + i to 2i and 2 + i to 3 + 4i. A conformal
mapping of the upper half-plane onto itself that maps 2i onto 3 + 4i is given by g(z) = 2z + 3. Now a
conformal mapping of the �rst quadrant onto itself with the desired properties is given by

Φ = f−1 ◦ g ◦ f.

It is explicitly given by

Φ(z) =
(
2z2 + 3

)1/2
,

where the complex square root can be chosen analytic on C \ (−∞, 0].
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