MATEMATISKA INSTITUTIONEN
 STOCKHOLMS UNIVERSITET

Avd. Matematik
Examinator: Jonathan Rohleder

Tentamensskrivning i
Matematik III Komplex Analys 7.5 hp

30 January 2019

No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Determine the value of the integral

$$
\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} \mathrm{~d} x
$$

Solution: First note that the integrand is an even function. Hence,

$$
\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} \mathrm{~d} x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}}
$$

We rewrite the latter integral as the contour integral of the function $f(z)=\frac{1}{\left(1+z^{2}\right)^{3}}$ along a counterclockwise parametrization of the contour $C_{\rho}=[-\rho, \rho] \cup C_{\rho}^{+}$, where C_{ρ}^{+}denotes the upper half of the circle of radius ρ centered at zero. Thus

$$
\int_{-\infty}^{\infty} \frac{1}{\left(1+z^{2}\right)^{3}} \mathrm{~d} x=\lim _{\rho \rightarrow \infty} \int_{C_{\rho}} f(z) \mathrm{d} z-\lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{+}} f(z) \mathrm{d} z .
$$

Moreover, the second limit on the right-hand side is zero since $f(z)$ is the quotient of two polynomials where the degree of the numerator is 0 and the degree of the denominator is 6 , and $6-0 \geq 2$. We are going to calculate the remaining integral over C_{ρ} by using the residue theorem. The denominator of $f(z)$ can be written $(z-i)^{3}(z+i)^{3}$ and, hence, f has two poles (each of order three), namely $-i$ and i, out of which only i lies inside C_{ρ} (for sufficiently large ρ). The residue of f at i is given by

$$
\operatorname{Res}(f ; i)=\lim _{z \rightarrow i} \frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}}\left[(z-i)^{3} f(z)\right]=\lim _{z \rightarrow i} \frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}}\left[\frac{1}{(z+i)^{3}}\right]=\lim _{z \rightarrow i} \frac{1}{2} \frac{12}{(z+i)^{5}}=\frac{3}{16 i}
$$

(see Theorem 1 on p. 310 in the course book). Thus

$$
\int_{0}^{\infty} f(x) \mathrm{d} x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\frac{1}{2} \lim _{\rho \rightarrow \infty} 2 \pi i \operatorname{Res}(f ; i)=\frac{3 \pi}{16} .
$$

2. (a) Determine the order of the pole of $f(z)=\frac{1}{(\sin z+z)^{2}}$ at $z=0$.
(b) Assume that the analytic function $f(z)$ has a pole of order m at the point z_{0}. Prove that $f^{\prime}(z)$ has a pole of order $m+1$ at z_{0}.
Solution: (a) The function $g(z)=(\sin z+z)^{2}$ has derivatives

$$
\begin{aligned}
g^{\prime}(z) & =2(\sin z+z)(\cos z+1) \\
g^{\prime \prime}(z) & =2(\cos z+1)^{2}+2(\sin z+z)(-\sin z+1)
\end{aligned}
$$

and, hence, $g(0)=0, g^{\prime}(0)=0, g^{\prime \prime}(0)=8 \neq 0$. Thus g has a zero of order two at $z=0$. Consequently, $f=1 / g$ has a pole of order two at $z=0$.
(b) It is clear that f^{\prime} is defined and analytic in a punctured neighborhood of z_{0} as f is. If f has a pole of order m at z_{0} then f has a Laurent expansion

$$
f(z)=\sum_{j=-m}^{\infty} a_{j}\left(z-z_{0}\right)^{j}
$$

around z_{0} with $a_{-m} \neq 0$. Differentiating yields

$$
f^{\prime}(z)=\sum_{j=-m}^{\infty} j a_{j}\left(z-z_{0}\right)^{j-1}=\sum_{j=-m-1}^{\infty}(j+1) a_{j+1}\left(z-z_{0}\right)^{j}
$$

and the latter is a (the unique) Laurent expansion of f^{\prime} around z_{0}. Its coefficient with the smallest index is $-m a_{-m} \neq 0$ corresponding to $\left(z-z_{0}\right)^{-(m+1)}$. Hence, f^{\prime} has a pole of order $m+1$ at z_{0}.
3. Let γ be a directed smooth curve with initial point α and terminal point β. Show that

$$
\int_{\gamma} z \mathrm{~d} z=\frac{\beta^{2}-\alpha^{2}}{2}
$$

Which result does this yield if γ is a closed curve? Give an alternative explanation for the result for a closed curve.
Solution: As γ is a smooth curve, we may choose a smooth parametrization $z(t), t \in[0,1]$, such that $z(0)=\alpha$ and $z(1)=\beta$. Then

$$
\int_{\gamma} z \mathrm{~d} z=\int_{0}^{1} z(t) z^{\prime}(t) \mathrm{d} t=\frac{1}{2} \int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} z^{2}(t) \mathrm{d} t=\left.\frac{1}{2} z^{2}(t)\right|_{t=0} ^{1}=\frac{z^{2}(1)-z^{2}(0)}{2}=\frac{\beta^{2}-\alpha^{2}}{2}
$$

For a closed curve γ we have $\alpha=\beta$, that is, $\int_{\gamma} z \mathrm{~d} z=0$. This follows also from Cauchy's integral theorem as z is entire (in particular analytic inside and on γ).
4. Calculate all Laurent series expansions of the function $f(z)=\frac{1}{2 z^{2}+4 z-6}$ centered at $z_{0}=1$.

Solution: The denominator can be rewritten $2(z-1)(z+3)$. Hence, f has singularities at 1 and -3 and is analytic otherwise. Hence we have two Laurent expansions centered at 1, namely one for $|z-1|<4$ and one for $|z-1|>4$. In order to compute them we rewrite $f(z)$ in partial fractions,

$$
\begin{equation*}
f(z)=\frac{1}{8(z-1)}-\frac{1}{8(z+3)} \tag{1}
\end{equation*}
$$

Case $1(|z-1|<4)$: Here

$$
\frac{1}{8(z+3)}=\frac{1}{8} \frac{1}{4-(1-z)}=\frac{1}{32} \frac{1}{1-\frac{1-z}{4}}=\frac{1}{32} \sum_{k=0}^{\infty}\left(\frac{1-z}{4}\right)^{k}=\frac{1}{32} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}(z-1)^{k}
$$

as $\left|\frac{1-z}{4}\right|<1$. Thus (1) gives

$$
f(z)=\frac{1}{8}(z-1)^{-1}-\frac{1}{32} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}(z-1)^{k}
$$

Case $2(|z-1|>4)$: Here

$$
\frac{1}{8(z+3)}=\frac{1}{8} \frac{1}{z-1} \frac{1}{1-\frac{4}{1-z}}=\frac{1}{8} \frac{1}{z-1} \sum_{k=0}^{\infty}\left(\frac{4}{1-z}\right)^{k}=\frac{1}{8} \sum_{k=0}^{\infty}(-4)^{k}(z-1)^{-k-1}
$$

This yields

$$
f(z)=-\frac{1}{8} \sum_{k=1}^{\infty}(-4)^{k}(z-1)^{-k-1}=-\frac{1}{8} \sum_{k=0}^{\infty}(-4)^{k+1}(z-1)^{-k}
$$

5. (a) Use Cauchy's integral formula to determine the value of

$$
\oint_{|z|=2} \frac{\cos z}{z^{2}-5 z+4} \mathrm{~d} z
$$

(b) Suppose that f is analytic inside and on the unit circle $|z|=1$ and satisfies $|f(z)| \leq M$ for all z with $|z|=1$. Verify that $\left|f^{\prime}(i / 2)\right| \leq 4 M$ holds.
Solution: (a) The integrand can be written as $g(z) /(z-1)$, where $g(z)=\frac{\cos z}{z-4}$ is analytic inside and on the given contour. Hence

$$
\oint_{|z|=2} \frac{\cos z}{z^{2}-5 z+4} \mathrm{~d} z=\oint_{|z|=2} \frac{g(z)}{z-1} \mathrm{~d} z=2 \pi i g(1)=-\frac{2}{3} \cos (1) \pi i
$$

by Cauchy's formula.
(b) We apply Cauchy's formula for the derivative and obtain

$$
\left|f^{\prime}(i / 2)\right|=\left|\frac{1}{2 \pi i} \oint_{|z|=1} \frac{f(z)}{(z-i / 2)^{2}} \mathrm{~d} z\right| \leq 4 \frac{M}{2 \pi} 2 \pi=4 M
$$

where we have used that the length of the contour equals $2 \pi i$ and that for $|z|=1$ we have

$$
|z-i / 2| \geq|z|-|i / 2|=1-1 / 2=1 / 2
$$

6. Find a conformal mapping of the first quadrant onto itself which maps the point $1+i$ to the point $2+i$.
Solution: We can make life easier by dealing with the upper half-plane. The mapping $f(z)=z^{2}$ maps the first quadrant onto the upper halfplane, and it maps $1+i$ to $2 i$ and $2+i$ to $3+4 i$. A conformal mapping of the upper half-plane onto itself that maps $2 i$ onto $3+4 i$ is given by $g(z)=2 z+3$. Now a conformal mapping of the first quadrant onto itself with the desired properties is given by

$$
\Phi=f^{-1} \circ g \circ f
$$

It is explicitly given by

$$
\Phi(z)=\left(2 z^{2}+3\right)^{1 / 2}
$$

where the complex square root can be chosen analytic on $\mathbb{C} \backslash(-\infty, 0]$.

