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Examinator: Jonathan Rohleder 30 January 2019

No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of
E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Determine the value of the integral
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Solution: First note that the integrand is an even function. Hence,

/“ 1 1/“ 1
— de==f —
o (1+a2)3 2 ) o (L+22)3

We rewrite the latter integral as the contour integral of the function f(z) = m along a counter-
clockwise parametrization of the contour C, = [—p, p] U C’;r, where C[J{ denotes the upper half of the

circle of radius p centered at zero. Thus
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Moreover, the second limit on the right-hand side is zero since f(z) is the quotient of two polynomials
where the degree of the numerator is 0 and the degree of the denominator is 6, and 6 — 0 > 2. We are
going to calculate the remaining integral over C, by using the residue theorem. The denominator of
f(z) can be written (2 —7)3(z + i) and, hence, f has two poles (each of order three), namely —i and
i, out of which only ¢ lies inside C,, (for sufficiently large p). The residue of f at i is given by
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(see Theorem 1 on p. 310 in the course book). Thus
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2. (a) Determine the order of the pole of f(z) = 0 5z at z = 0.

1
(sinz+2)?
(b) Assume that the analytic function f(z) has a pole of order m at the point zo. Prove that f’(z) has
a pole of order m + 1 at zg.

Solution: (a) The function g(z) = (sinz + 2)? has derivatives

g'(2) = 2(sinz + 2)(cos z + 1),
g’ (2) = 2(cos z + 1)? + 2(sin z + 2)(—sin z + 1),

and, hence, g(0) = 0,¢'(0) = 0,¢"”(0) = 8 # 0. Thus g has a zero of order two at z = 0. Consequently,
f =1/g has a pole of order two at z = 0.



(b) It is clear that f’ is defined and analytic in a punctured neighborhood of 2y as f is. If f has a pole
of order m at zy then f has a Laurent expansion
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around zg with a_,,, # 0. Differentiating yields
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and the latter is a (the unique) Laurent expansion of f’ around zg. Its coefficient with the smallest
index is —ma_,, # 0 corresponding to (z — z9)~("*+1). Hence, f’ has a pole of order m + 1 at z.

. Let v be a directed smooth curve with initial point « and terminal point 5. Show that
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Which result does this yield if 7 is a closed curve? Give an alternative explanation for the result for a
closed curve.

Solution: As « is a smooth curve, we may choose a smooth parametrization z(t), t € [0, 1], such that
z(0) = a and 2(1) = 8. Then
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For a closed curve v we have @ = (3, that is, fy zdz = 0. This follows also from Cauchy’s integral
theorem as z is entire (in particular analytic inside and on 7).

. Calculate all Laurent series expansions of the function f(z) = 57— centered at zo = 1.

Solution: The denominator can be rewritten 2(z—1)(z+3). Hence, f has singularities at 1 and —3 and
is analytic otherwise. Hence we have two Laurent expansions centered at 1, namely one for |z — 1] < 4
and one for |z — 1| > 4. In order to compute them we rewrite f(z) in partial fractions,
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Case 1 (|z — 1] < 4): Here
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Case 2 (|z — 1| > 4): Here
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This yields
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. (a) Use Cauchy’s integral formula to determine the value of
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(b) Suppose that f is analytic inside and on the unit circle |z| = 1 and satisfies |f(z)| < M for all z
with |z| = 1. Verify that |f'(i/2)| < 4M holds.

Solution: (a) The integrand can be written as g(z)/(z — 1), where g(z) = 27 is analytic inside and
on the given contour. Hence
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by Cauchy’s formula.
(b) We apply Cauchy’s formula for the derivative and obtain
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where we have used that the length of the contour equals 27i and that for |2| = 1 we have

lz—i/2| > |2 — |i/2] =1—1/2 = 1/2.

. Find a conformal mapping of the first quadrant onto itself which maps the point 1 4 ¢ to the point
2+

Solution: We can make life easier by dealing with the upper half-plane. The mapping f(z) = 22 maps
the first quadrant onto the upper halfplane, and it maps 1 + ¢ to 27 and 2 + ¢ to 3 + 4. A conformal
mapping of the upper half-plane onto itself that maps 2i onto 3 4 4i is given by g(z) = 22 + 3. Now a
conformal mapping of the first quadrant onto itself with the desired properties is given by

@:f_logof.

It is explicitly given by
®(2) = (22 +3) 1/2,

where the complex square root can be chosen analytic on C\ (—o0,0].



