No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Find all solutions to the equation $3 \sin z+i \cos z=e^{i z}$.
2. Calculate all Laurent series expansions of the function

$$
f(z)=\frac{(z-i)^{2}}{z^{2}-(8+i) z+8 i}
$$

centered at $z_{0}=i$.
3. Use residue calculus to determine the value of the integral

$$
\int_{0}^{\pi} \frac{8}{5+2 \cos x} \mathrm{~d} x .
$$

4. (a) Show that the function $A \log |z|+B$ is harmonic in each domain that does not contain the origin if $A, B \in \mathbb{R}$ are constants.
(b) Find a pair of complex numbers that are symmetric with respect to both the real axis and the circle $|z-2 i|=1$.
(c) Determine a harmonic function in $\{z \in \mathbb{C}: \operatorname{Im} z>0,|z-2 i|>1\}$ that is equal to π on the circle $|z-2 i|=1$ and equals zero on the real axis.
5. Formulate Rouché's theorem and use it to prove that each complex polynomial of degree n has exactly n zeroes (taking multiplicities into account).
6. Let

$$
G:=\left\{(z, w) \in \mathbb{C}^{2}:|w|>1\right\}
$$

and let $f: G \rightarrow \mathbb{C}$ be analytic and bounded.
(a) Show that there exists an analytic function g such that $f(z, w)=g(w)$ holds for all $(z, w) \in G$, that is, f is independent of the variable z.
(b) Show with the help of an appropriate example that a function $f: G \rightarrow \mathbb{C}$ which is analytic and bounded is not necessarily constant.
(c) Is the statement (a) still true if G is replaced by $G^{\prime}:=\{(z, w) \in G: \operatorname{Im} z \neq 0\}$?

Exams will be returned on 5 June 2019 at 3 pm in room 414, building 6, and will be stored in the students' office afterwards.

