MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Jonathan Rohleder

Tentamensskrivning i
Matematik III Komplex Analys
7.5 hp

No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Use residue calculus to determine the value of the integral

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

2. Verify that the function $u(x, y)=2 x y-5 x-x^{2}+y^{2}$ is harmonic and determine all its harmonic conjugates.
3. Calculate all Laurent series expansions of the function

$$
f(z)=\frac{1}{(z-1)^{2}(z-2)}
$$

centered at $z_{0}=1$.
4. Find the number of zeroes of the function $5 z^{3}+9 z^{2}-25 z+21$ inside the disc $|z-1|<1$.
5. (a) Determine all Möbius transformations that map each pair of parallel straight lines to a pair of parallel straight lines.
(b) What does the image of a rectangle under a Möbius transformation with the property in (a) look like?
(c) Find the Möbius transformation that maps 0 to 0,1 to i and ∞ to ∞.
6. Let $B=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2} \leq 1\right\}$ denote the closed ball in \mathbb{C}^{2} of radius 1 centered at the origin. Assume that $f: \mathbb{C}^{2} \backslash B \rightarrow \mathbb{C}$ is analytic and bounded. Show that f is constant on $\mathbb{C}^{2} \backslash B$.

Exams will be returned on 28 August 2019 at 3 pm in room 414, building 6, and will be stored in the students' office afterwards.

