MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Jonathan Rohleder

Tentamensskrivning i
Matematik III Komplex Analys
7.5 hp

23 August 2019

No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Use residue calculus to determine the value of the integral

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

Solution. First note that the integrand is an even function. Hence,

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

We rewrite the latter integral as the contour integral of the function $f(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$ along a counterclockwise parametrization of the contour $C_{\rho}=[-\rho, \rho] \cup C_{\rho}^{+}$, where C_{ρ}^{+}denotes the upper half of the circle of radius ρ centered at zero. Thus

$$
\int_{-\infty}^{\infty} \frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} \mathrm{d} x=\lim _{\rho \rightarrow \infty} \int_{C_{\rho}} f(z) \mathrm{d} z-\lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{+}} f(z) \mathrm{d} z
$$

Moreover, the second limit on the right-hand side is zero since $f(z)$ is the quotient of two polynomials where the degree of the numerator is 2 and the degree of the denominator is 4 , and $4-2 \geq 2$. We are going to calculate the remaining integral over C_{ρ} by using the residue theorem. One sees directly that f has the four poles (each of order one) $-i, i,-2 i, 2 i$, out of which only i and $2 i$ lie inside C_{ρ} (for sufficiently large ρ). The residue of f at i is given by

$$
\operatorname{Res}(f ; i)=\lim _{z \rightarrow i} \frac{z^{2}}{(z+i)\left(z^{2}+4\right)}=\frac{i}{6}
$$

the residue of f at $2 i$ is given by

$$
\operatorname{Res}(f ; i)=\lim _{z \rightarrow 2 i} \frac{z^{2}}{\left(z^{2}+1\right)(z+2 i)}=-\frac{i}{3}
$$

Thus by the residue theorem

$$
\int_{0}^{\infty} f(x) \mathrm{d} x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\frac{1}{2} \lim _{\rho \rightarrow \infty} 2 \pi i(\operatorname{Res}(f ; i)+\operatorname{Res}(f ; 2 i))=\frac{\pi}{6}
$$

2. Verify that the function $u(x, y)=2 x y-5 x-x^{2}+y^{2}$ is harmonic and determine all its harmonic conjugates.
Solution. Computation yields

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-2+2=0
$$

Hence u is harmonic on \mathbb{R}^{2}. By the Cauchy-Riemann equations, any harmonic conjugate v must satisfy

$$
\frac{\partial v}{\partial y}(x, y)=\frac{\partial u}{\partial x}(x, y)=2 y-5-2 x
$$

which implies $v(x, y)=y^{2}-5 y-2 x y+C(x)$, and

$$
\frac{\partial v}{\partial x}(x, y)=-\frac{\partial u}{\partial y}=-2 x-2 y
$$

As we already know that $\frac{\partial v}{\partial x}(x, y)=-2 y+C^{\prime}(x)$, we conclude $C^{\prime}(x)=-2 x$ and thus $C(x)=-x^{2}+d$, where d is an arbitrary real constant. We conclude that all harmonic conjugates of u have the form

$$
v(x, y)=y^{2}-5 y-2 x y-x^{2}+d
$$

with arbitrary $d \in \mathbb{R}$.
3. Calculate all Laurent series expansions of the function

$$
f(z)=\frac{1}{(z-1)^{2}(z-2)}
$$

centered at $z_{0}=1$.
Solution. The function f has a pole of order two at 1 and a pole of order 1 at 2 . We write f as partial fractions and obtain

$$
f(z)=-\frac{1}{z-1}-\frac{1}{(z-1)^{2}}+\frac{1}{z-2} .
$$

For $|z-1|<1, z \neq 1$, we get by using the geometric series

$$
f(z)=-\frac{1}{z-1}-\frac{1}{(z-1)^{2}}-\frac{1}{1-(z-1)}=-\frac{1}{z-1}-\frac{1}{(z-1)^{2}}-\sum_{j=0}^{\infty}(z-1)^{j}=-\sum_{j=-2}^{\infty}(z-1)^{j}
$$

For $|z-1|>1$ the same argument gives

$$
f(z)=-\frac{1}{z-1}-\frac{1}{(z-1)^{2}}+\frac{1}{z-1} \frac{1}{1-\frac{1}{z-1}}=-\frac{1}{z-1}-\frac{1}{(z-1)^{2}}+\sum_{j=0}^{\infty}(z-1)^{-j-1}=\sum_{j=3}^{\infty}(z-1)^{-j}
$$

4. Find the number of zeroes of the function $5 z^{3}+9 z^{2}-25 z+21$ inside the disc $|z-1|<1$.

Solution. By means of polynomial division we rewrite the given function as

$$
5 z^{3}+9 z^{2}-25 z+21=5(z-1)^{3}+24(z-1)^{2}+8(z-1)+10
$$

Thus our problem is equivalent to finding the number of zeroes of $5 w^{3}+24 w^{2}+8 w+10$ within $|w|<1$. We define $f(w)=24 w^{2}$ and $h(w)=5 w^{3}+8 w+10$. For all w with $|w|=1$ we have

$$
\begin{equation*}
|h(w)| \leq 5|w|^{3}+8|w|+10=23<24=|f(w)| . \tag{1}
\end{equation*}
$$

Moreover, f has two zeroes inside the unit disc (namely a double zero at 0). By Rouché's theorem and (1) also $f(w)+h(w)=5 w^{3}+24 w^{2}+8 w+10$ has 2 zeroes inside the unit disc.
5. (a) Determine all Möbius transformations that map each pair of parallel straight lines to a pair of parallel straight lines.
(b) What does the image of a rectangle under a Möbius transformation with the property in (a) look like?
(c) Find the Möbius transformation that maps 0 to 0,1 to i and ∞ to ∞.

Solution. (a) In the extended complex plane $\hat{\mathbb{C}}$ two lines are parallel if and only if they intersect at ∞. Hence we are looking for all Möbius transformations that map ∞ to ∞. But any transformation of the form $\frac{A z+B}{C z+D}$ maps ∞ to $\frac{A}{C}$ and thus the requirement is equivalent to $C=0$. Thus with $a=A / D$ and $b=B / D$ the Möbius transformations in question are those that have the form $a z+b$, i.e. the affine-linear mappings.
(b) As the transformations under consideration map parallel lines onto parallel lines and preserve angles, the image of any rectangle will again be a rectangle.
(c) As the Möbius transformation we are looking for shall map ∞ to ∞, it belongs to the above class and takes the form $f(z)=a z+b$ with complex a, b. Moreover, the requirement $f(0)=0$ enforces $b=0$. Finally, from $f(1)=i$ we get $a=i$. Thus $f(z)=i z$.
6. Let $B=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2} \leq 1\right\}$ denote the closed ball in \mathbb{C}^{2} of radius 1 centered at the origin. Assume that $f: \mathbb{C}^{2} \backslash B \rightarrow \mathbb{C}$ is analytic and bounded. Show that f is constant on $\mathbb{C}^{2} \backslash B$.
Solution. For each $w_{0} \in \mathbb{C}$ with $\left|w_{0}\right|>1$, any point $\left(z, w_{0}\right)$ with $z \in \mathbb{C}$ satisfies $\left|\left(z, w_{0}\right)\right|^{2}=|z|^{2}+|w|^{2}>$ 1 and thus the function $z \mapsto f\left(z, w_{0}\right)$ is entire and, by assumption, bounded. Thus by Liouville's theorem, for each $\left|w_{0}\right|>1$ this function is constant. Similarly, for each $\left|z_{0}\right|>1$ the function $w \mapsto$ $f\left(z_{0}, w\right)$ is constant. It follows that f is constant on the set

$$
\left\{(z, w) \in \mathbb{C}^{2}:|z|>1 \text { or }|w|>1\right\} \subsetneq \mathbb{C}^{2} \backslash B
$$

Take now again the function $z \mapsto f\left(z, w_{0}\right)$, but for arbitrary $w_{0} \in \mathbb{C}$; it is defined on all z such that $\left(z, w_{0}\right)$ is outside B and it is analytic there. On the other hand, it is constant for all sufficiently large z and, as an analytic function, must then be constant on its whole (connected) domain (since it is constant on a set with accumulation point). This implies that f is constant everywhere outside B.

Exams will be returned on 28 August 2019 at 3 pm in room 414, building 6, and will be stored in the students' office afterwards.

