MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Jonathan Rohleder

Tentamensskrivning i
Matematik III Komplex Analys
7.5 hp

17 December 2019

No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Calculate all Laurent series expansions of the function

$$
f(z)=\frac{1}{z^{2}+(4-3 i) z-12 i}
$$

centered at $z_{0}=3 i$.
2. Find all $a, b, c \in \mathbb{R}$ such that $a x^{2}+b e^{x-y}+c y^{2}$ is the real part of an analytic function. Moreover, for each such triple (a, b, c) determine all these analytic functions.
3. Determine the value of the integral

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \mathrm{d} x
$$

where $a, b>0$ are real with $a \neq b$.
4. Let $a \in \mathbb{C}$ with $|a|>e$. Prove that the equation

$$
e^{z}=a z^{n}
$$

has precisely n solutions in the open unit disc $|z|<1$.
5. Show that if f is analytic at z_{0} and $f^{\prime}\left(z_{0}\right) \neq 0$ then there exists an open disk D centered at z_{0} such that f is injective on D. (In particular, f is conformal on D.)
6. (a) Show that the function $A \log |z|+B$, with $A, B \in \mathbb{R}$ constant, is harmonic in each domain that does not contain the origin.
(b) Find a pair of complex numbers that are symmetric with respect to both the real axis and the circle $|z+5 i|=4$.
(c) Determine a harmonic function in $\{z \in \mathbb{C}: \operatorname{Im} z<0,|z+5 i|>4\}$ that is equal to 0 on the circle $|z+5 i|=4$ and equals 1 on the real axis.

Exams will be returned on 19 December 2019 at 3 pm in room 414, building 6 , and will be stored in the students' office afterwards.

