Examinator: Jonathan Rohleder

No calculators, books, or other resources allowed. Max score on each problem is 5p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. Calculate all Laurent series expansions of the function

$$
f(z)=\frac{1}{z^{2}-(4+i) z+3+3 i}
$$

centered at $z_{0}=0$.
2. Compute the contour integral

$$
\int_{\Gamma}\left(|z-1+i|^{2}-z\right) \mathrm{d} z
$$

where Γ is the positively oriented upper semicircle of radius one centered at $1-i$.
3. Use residue calculus to determine the value of the integral

$$
\int_{0}^{2 \pi} \frac{2}{\cos x+3} \mathrm{~d} x
$$

4. (a) Show that $u(x, y)=\operatorname{Re} f(z)$ is harmonic for any analytic function f, where $z=x+i y$.
(b) Prove that the harmonic conjugate of a given harmonic function u is unique up to a constant: If v_{1}, v_{2} are two harmonic conjugates of u then $v_{1}-v_{2}$ is constant.
5. Sketch the region

$$
S=\left\{z=r e^{i \varphi}: r>0,0<\varphi<\frac{3 \pi}{4}\right\}
$$

in the complex plane and find a conformal mapping of the open disk of radius one centered at the origin onto S that maps the origin onto the point $e^{\frac{3 \pi}{8} i}$.
6. Compute the integral

$$
\iint_{\partial_{0} P} \frac{3}{1-2 z w} \mathrm{~d} z \mathrm{~d} w,
$$

where $\partial_{0} P=\{(z, w):|z|=|w|=1\}$ is the distinguished boundary of the unit polydisk centered at the origin, taken with the usual orientation.

Exams will be returned on 16 January 2020 at 3 pm in room 414 , building 6 , and will be stored in the students' office afterwards.

