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As the exam questions were individualized, we provide solutions to one set of example questions.

1. Find all solutions to the equation 3 tan z + 4i = ie2iz.

Solution: The equation is equivalent to

−3i
eiz − e−iz

eiz + e−iz
= ie2iz − 4i.

After multiplying by eiz + e−iz and simplifying we arrive at the equation e3iz = 7e−iz, which in turn
is equivalent to e4iz = 7. This is satis�ed if and only if

4iz = log 7 = Log 7 + 2kπi, k ∈ Z,

which leads to z = − i
4Log 7 + kπ

2 , k ∈ Z.

2. Calculate all Laurent series expansions of the function

f(z) =
1

z(z − i)2

centered at z0 = i.

Solution: The function has two singularities, a pole of order two at 0 and a pole of order one at i.
Hence we get Laurent series expansions in two regions, namely for |z − i| < 1 and for |z − i| > 1. Note
that f(z), written in partial fractions, equals

f(z) =
1

z − i
− i

(z − i)2
− 1

z
.

Now in 0 < |z − i| < 1 we get

−1

z
= − 1

z − i+ i
=

i

1− i−z
i

=

∞∑
j=0

i1−j(−1)j(z − i)j

and thus

f(z) =
1

z − i
− i

(z − i)2
+

∞∑
j=0

i1−j(−1)j(z − i)j .

On the other hand, in |z − i| > 1 we have

−1

z
=

1

i− z
1

1− i
i−z

= (i− z)−1
∞∑
j=0

ij(i− z)−j =

∞∑
j=0

ij(−1)j+1(z − i)−j−1

and thus

f(z) =
1

z − i
− i

(z − i)2
+

∞∑
j=0

ij(−1)j+1(z − i)−j−1 =

∞∑
j=2

ij(−1)j+1(z − i)−j−1.
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3. Use residue calculus to determine the value of the integral∫ 2π

0

1

2 + sinx
dx.

Solution: We have∫ 2π

0

1

2 + sinx
dx =

∫ 2π

0

2i

4i+ eix − e−ix
dx =

∫
Γ

2i

4i+ z − 1
z

1

iz
dz = 2

∫
Γ

1

z2 + 4iz − 1
dz

for the contour Γ describing the unit circle and its parametrization x 7→ eix for x ∈ [0, 2π]. The
integrand has poles of order one at (−2 ±

√
3)i, of which z0 := (−2 +

√
3)i lies inside the unit circle.

Thus for f(z) = 1
z2+4iz−1 we have∫ 2π

0

1

2 + sinx
dx = 2(2πi)Res (f, z0) = 4πi lim

z→z0

1

z − (−2−
√

3)i
=

4πi

2
√

3i
=

2π√
3
.

4. Determine the number of zeroes of z5 − 3z4 − 2 in the disk |z| < 2.

Solution: In order to apply Rouché's theorem we de�ne

f(z) := 3z4 and g(z) := z5 − 3z4 − 2.

Then f has four zeroes in |z| < 2, namely a zero of order four at the origin. Moreover, on the boundary
|z| = 2 we have

|f(z)− g(z)| = |z5 − 2| ≤ |z|5 + 2 = 25 + 2 = 34 < 48 = 3 · 24 = |f(z)|.

It follows that g has the same number of zeroes in |z| < 2 as f , that is, four.

5. (a) Show that, for A,B ∈ R constant, the function AArg z + B is harmonic in the right half-plane
Re z > 0.

(b) Construct a Möbius transformation of the unit disk |z| < 1 onto the right half-plane Re z > 0
such that the upper half-disk is mapped onto the �rst quadrant Re z > 0, Im z > 0.

(c) Find a harmonic function u in the unit disk |z| < 1 that satis�es u = φ on the boundary |z| = 1,
where

φ =

{
2 on the upper half-circle,

−2 on the lower half-circle.

Solution: (a) The function −iALog z+B = −iALog |z|+AArg z+B is analytic in the right half-plane
and has AArg z +B as its real part, which is then harmonic.

(b) Such a Möbius transformation has to map the unit circle onto the imaginary axis. This can be done
by, e.g., mapping −1 to 0, i to i and 1 to ∞. The corresponding Möbius transformation with these
properties is

f(z) =
1 + z

1− z
.

It maps the point 0 which is inside the disc to the point 1 which is inside the right-half plane and,
thus, has the desired properties. For further use in (c) we note that f maps the upper half-circle to the
�positive imaginary half-axis�.

(c) According to (a), a harmonic function in the right half-plane having the value 2 on the �positi-
ve imaginary half-axis� and −2 on the negative one is 4Arg z/π. As conformal mappings transform
harmonic functions into harmonic functions,

u(z) = 4Arg
1 + z

1− z
,

and this function has the desired boundary values.
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6. Compute the integral ∫∫
∂0P

1

2zw − 3
dz dw,

where ∂0P = {(z, w) : |z| = |w| = 1} is the distinguished boundary of the unit polydisk centered at
the origin, taken with the usual orientation.

Solution: We rewrite the integral as∫∫
∂0P

1

2zw − 3
dz dw =

∫
|w|=1

1

2w

∫
|z|=1

1

z − 3
2w

dz dw,

and the integrand of the inner integral has, for �xed w with |w| = 1, its only singularity at 3/(2w) which
has modulus 3/2, that is, the singularity is outside the contour |z| = 1. Consequently, the integrand of
the inner integral is analytic inside the contour for each w with |w| = 1 and, thus, the inner integral is
always zero. As a result, ∫∫

∂0P

1

2zw − 3
dz dw = 0.
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