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As the exam questions were individualized, we provide solutions to one set of example questions.

1. Find all solutions to the equation tan z = 1
2 (1 +

√
3i).

Solution: The equation can be rewritten

−ie
iz − e−iz

eiz + e−iz
=

1

2
(1 +

√
3i)

and then

e2zi − 1

e2zi + 1
=

1

2
(i−
√
3).

After multiplying by e2zi + 1 and simplifying we get

e2iz =
i

2 +
√
3
= e−Log (2+

√
3)+πi

2 .

This yields

z =
π

4
+
i

2
Log (2 +

√
3) + πk, k ∈ Z.

2. Calculate all Laurent series expansions of the function

f(z) =
1

(z − 1)(z − i)
centered at z0 = 0.

Solution: The function f has poles of order one at 1 and i, both at distance 1 from the origin. Hence
we have di�erent Laurent series expansions for |z| < 1 and |z| > 1. Moreover, we have

f(z) =

(
1

2
+
i

2

)(
1

z − 1
− 1

z − i

)
.

Hence for |z| < 1 we have for a ∈ {1, i}

1

z − a
=

1

−a
1

1− z
a

= −
∞∑
j=0

zj

aj+1
.

Thus in |z| < 1 we have

f(z) =

(
1

2
+
i

2

)− ∞∑
j=0

zj +

∞∑
j=0

zj

ij+1

 =

(
1

2
+
i

2

) ∞∑
j=0

(i−j−1 − 1)zj .

For |z| > 1 and a ∈ {1, i} we get

1

z − a
=

1

z

1

1− a
z

=

∞∑
j=0

ajz−j−1.

Hence in |z| > 1 we have

f(z) =

(
1

2
+
i

2

) ∞∑
j=0

(1− ij)z−j−1.
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3. Use residue calculus to determine the value of the integral∫ ∞
0

x2

(x2 + 1)(x2 + 9)
dx.

Solution: First note that the integrand is an even function. Hence,∫ ∞
0

x2

(x2 + 1)(x2 + 9)
dx =

1

2

∫ ∞
−∞

x2

(x2 + 1)(x2 + 9)
.

We rewrite the latter integral as the contour integral of the function f(z) = z2

(z2+1)(z2+9) along a

counterclockwise parametrization of the contour Cρ = [−ρ, ρ] ∪ C+
ρ , where C

+
ρ denotes the upper half

of the circle of radius ρ centered at zero. Thus∫ ∞
−∞

z2

(z2 + 1)(z2 + 9)
dx = lim

ρ→∞

∫
Cρ

f(z)dz − lim
ρ→∞

∫
C+
ρ

f(z)dz.

Moreover, the second limit on the right-hand side is zero since f(z) is the quotient of two polynomials
where the degree of the numerator is 2 and the degree of the denominator is 4, and 4− 2 ≥ 2. We are
going to calculate the remaining integral over Cρ by using the residue theorem. One sees directly that
f has the four poles (each of order one) −i, i, −3i, 3i, out of which only i and 3i lie inside Cρ (for
su�ciently large ρ). The residue of f at i is given by

Res (f ; i) = lim
z→i

z2

(z + i)(z2 + 9)
=

i

16
;

the residue of f at 3i is given by

Res (f ; 3i) = lim
z→3i

z2

(z2 + 1)(z + 3i)
= − 3i

16
.

Thus by the residue theorem∫ ∞
0

f(x) dx =
1

2

∫ ∞
−∞

f(x) dx =
1

2
lim
ρ→∞

2πi
(
Res (f ; i) + Res (f ; 3i)

)
=
π

8
.

4. Assume that f(z) is analytic in the disk |z| < 2 and continuous in the closed disk |z| ≤ 2 with
|f(z)| ≤ 48 for all z with |z| = 2. Moreover, assume that f(z)/z3 is analytic in |z| < 2 as well. Find an
upper bound for |f(i/6)| and show that it is optimal.

Solution: For |z| = 2 we have ∣∣∣∣f(z)z3

∣∣∣∣ = |f(z)|8
≤ 48

8
= 6.

It follows from the maximum modulus principle that∣∣∣∣f(z)z3

∣∣∣∣ ≤ 6 for all z with |z| ≤ 2

and, hence, |f(z)| ≤ 6|z|3 for all z with |z| ≤ 2. Therefore

|f(i/6)| ≤ 6
1

63
=

1

36
.

This estimate is optimal: The function f(z) = 6z3 is analytic and f(z)/z3 = 6 is analytic as well.
Moreover, on |z| = 2 we have |f(z)| = 48. Finally,

|f(i/6)| = 6
1

63
=

1

36
.
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5. Prove that all zeroes of the polynomial z6 − 5z2 + 10 lie in the annulus 1 < |z| < 2.

Solution: Let g(z) = z6 − 5z2 + 10 and f1(z) = 10. Then for |z| = 1 we have

|g(z)− f1(z)| ≤ |z|6 + 5|z|2 = 6 < 10 = |f(z)|.

Hence g has no zeroes on |z| = 1 and no zeroes in |z| < 1 either. On the other hand, with f2(z) = z6,
on |z| = 2 we have

|g(z)− f2(z)| ≤ 5 · 22 + 10 = 30 < 26 = |f2(z)|,

and it follows that g has no zeroes on |z| = 2 and 6 zeroes in |z| < 2. By the above reasoning, all of
them have to lie in 1 < |z| < 2. Moreover, as g is a polynomial of degree 6, no further zeroes exist.

6. (a) Show that, for A,B ∈ R constant, the function ALog |z| + B is harmonic in each domain that
does not contain the origin.

(b) Find a pair of complex numbers that are symmetric with respect to both circles |z| = 1 and
|z − 3

10 | =
3
10 .

(c) Determine a harmonic function in the domain enclosed by the two circles in (b) that is constantly
equal to zero on |z − 3

10 | =
3
10 and constantly equal to 1 on |z| = 1.

Solution: (a) Let D ⊂ C be a domain that does not contain the origin. Then on the intersection of D
with any sector {reiφ : r > 0, φ ∈ [φ1, φ2]} with |φ1 − φ2| < 2π the function ALog |z| + B is the real
part of ALog |z|+B+ i arg z for an appropriate branch of arg that makes the latter function analytic.
Thus ALog |z|+B is harmonic on this intersection. As the sector can be chosen arbitrarily, it follows
that f is analytic on D.

(b) Symmetry with respect to |z| = 1 means

z1z2 = 1,

while symmetry with respect to |z − 3
10 | =

3
10 can be written as(

z1 −
3

10

)(
z2 −

3

10

)
=

9

100
.

The solution to this system of equations is z1 = 1
3 , z2 = 3.

(c) The Möbius transformation f(z) =
z− 1

3

z−3 maps 1/3 to 0 and 3 to ∞. Since every Möbius transfor-
mation preserves symmetry w.r.t. circles and lines, these points will still be symmetric to the image
circles so that these circles are concentric with center in the origin. The radii of the image circles are

|f(1)| =
∣∣∣1− 1

3

1− 3

∣∣∣ = 1

3
and |f(0)| = 1

9
.

The Dirichlet problem on the domain D′ lying between the image circles can be solved using the
function in (a). We want to satisfy the boundary values 1 on the circle of radius 1/3 and 0 on the circle
of radius 1/9. This implies

U(w) =
Log |w|
Log 3

+ 2

on D′. Then

u(z) = (U ◦ f)(z) =
Log

∣∣∣ z− 1
3

z−3

∣∣∣
Log 3

+ 2

is a harmonic function on D with the desired boundary values.
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