Solution to the exam Mathematical modeling 2019-03-22

(1) The Markov chain in this exercise has the following set states

$$
S=\{\text { Professional, Skilled, Unskilled }\}
$$

with the following transition probabilities:

	Professional	Skilled	Unskilled
Professional	0.8	0.1	0.1
Skilled	0.2	0.6	0.2
Unskilled	0.25	0.25	0.5

so that the transition matrix for this chain is

$$
P=\left(\begin{array}{ccc}
0.8 & 0.1 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.25 & 0.25 & 0.5
\end{array}\right)
$$

Then

$$
P^{2}=\left(\begin{array}{ccc}
0.685 & 0.165 & 0.15 \\
0.33 & 0.43 & 0.24 \\
0.2375 & 0.3 & 0.325
\end{array}\right)
$$

and thus the probability that a randomly chosen grandson of anskilled labourer is a professional man is 0.375 .
(2) Since $\left(a-1, \ldots, a_{n}\right)$ is an m-pattern, we have

$$
\left\{a_{1}+1, a_{2}+2, \ldots, a_{n}+n\right\}=\{m+1, m+2, \ldots, m+n\}
$$

It follows that

$$
\begin{gathered}
\left(a_{1}+1\right)+\left(a_{2}+2\right)+\cdots+\left(a_{n}+n\right)=(m+1)+(m+2)+\cdots+(m+n) \\
\Leftrightarrow a_{1}+a_{2}+\cdots a_{n}=m n
\end{gathered}
$$

(3) Add the two equation we have $d(I+S) / d t=0$ so $S(t)+I(t)$ for all t. equals a constant which we assume is N and it is the same as $S(0)+I(0)$. So $S=N-I$. Substituting it in the second equation yields

$$
\frac{d I}{d t}=\beta I(N-I)-\alpha I
$$

This can be written as

$$
I^{\prime}(t):=\frac{d I}{d t}=r I\left(1-\frac{I}{K}\right)
$$

where $r=\beta N-\alpha$ and $K=r / \beta$. The parameter r is often referred to as the growth rate. We can see that r can be positive or negative, so we consider two cases.
(i) $r<0$: If the growth rate is negative, $r<0$, then the number of infected individuals $I(t)$ tends to 0 as $t \rightarrow \infty$. To see this, notice that if $r<0$, then $K<0$. Hence, $I^{\prime}(t) \leq r I(t)$. The solutions of this simple differential inequality are $I(t) \leq I(0) e^{r t}$, and they approach zero for $r<0$. This implies that if $r<0$, the disease gradually disappears from the population on its own.
(ii) $r>0$: The logistic equation can be solved, and in this case, we can solve it explicitly. However it is not necessary. First we note that there are two steady states at $I=0$ and $I=K$. It is clear that I is either decreasing or increasing depending on the sign of $I^{\prime}(t)$, that is the sign of $1-I / K$ since $I(t) \geq 0$. Therefore $I(t)$ increases if $I<K$ and $I(t)$
decreases if $I>K$. So if we start with $I(0)>K$ then $I(t)$ will monotonically decreases to K as $t \rightarrow \infty$ (never crosses $I=K$). Similarly, if we start with $I(0)<K$ then $I(t)$ will monotonically increases to K as $t \rightarrow \infty$ (never crosses $I=K$).

Now we study the sign of the second derivative of I to decide the convexity.

$$
\frac{d^{2} I}{d t^{2}}=r\left(1-\frac{2 I}{K}\right) \frac{d I}{d t}=r^{2}\left(1-\frac{2 I}{K}\right)\left(1-\frac{I}{K}\right)
$$

For solutions in the interval $0<I(t)<K$, the second derivative changes sign when I crosses $I=K / 2)$. Thus values of t such that $I(t)<K / 2$, the second derivative of I is positive, and $I(t)$ is convex. For values of t for which $I(t)>K / 2$, the second derivative of I is negative so $I(t)$ is concave.

(4) We start by writing $N=\hat{N} N^{*}, C=\hat{C} C^{*}$ and $t=\hat{t} t^{*}$, and substitute in the equations we can define $\hat{C}=k_{n}, \hat{t}=\frac{V}{F}$ and $\hat{N}=\frac{k_{n} F}{\alpha V k}$. Introduce $\alpha_{1}=\frac{V k}{F}$, and $\alpha_{2}=\frac{C_{0}}{k_{n}}$ we end up with

$$
\begin{aligned}
& \frac{d N^{*}}{d t^{*}}=\alpha_{1} \frac{C^{*}}{1+C^{*}} N^{*}-N^{*} \\
& \frac{d C^{*}}{d t^{*}}=-\frac{C^{*}}{1+C^{*}} N^{*}-C^{*}+\alpha_{2}
\end{aligned}
$$

Now we drop $*$ in the equations:

$$
\begin{aligned}
\frac{d N}{d t} & =\alpha_{1} \frac{C}{1+C} N-N \\
\frac{d C}{d t} & =-\frac{C}{1+C} N-C+\alpha_{2}
\end{aligned}
$$

Define $f(N, C):=\alpha_{1} \frac{C}{1+C} N-N, g(N, C):=-\frac{C}{1+C} N-C+\alpha_{2}$.
Solving $f(N, C)=0, g(N, C)=0$ yields two equilibria (steady states):

$$
\bar{X}_{1}=\left(0, \alpha_{2}\right), \quad \bar{X}_{2}=\left(\alpha_{1}\left(\alpha_{2}-\frac{1}{\alpha_{1}-1}\right), \frac{1}{\alpha_{1}-1}\right)
$$

An equilibrium is physically meaningful only if ≥ 0 and $\bar{N} \geq 0$. So \bar{X}_{1} is always well-defined in this sense but not the second. The equilibrium \bar{X}_{2} is well-defined and makes physical sense only if

$$
\alpha_{1}>1 \text { and } \alpha_{2}>\frac{1}{\alpha_{1}-1} \Longleftrightarrow \alpha_{1}>1 \text { and } \alpha_{2}\left(\alpha_{1}-1\right)>1
$$

At any point (N, C) the Jacobian $A=F^{\prime}$ of $F=(f(N, C), g(N, C))^{\top}$ is

$$
A=\left(\begin{array}{cc}
\alpha_{1} \frac{C}{1+C}-1 & \frac{\alpha_{1} N}{(1+C)^{2}} \\
-\frac{C}{1+C} & -\frac{N}{(1+C)^{2}}-1
\end{array}\right)
$$

In particular, at \bar{X}_{2} where $\bar{C}=\frac{1}{\alpha_{1}-1}, \bar{N}=\frac{\alpha_{1}\left(\alpha_{1} \alpha_{2}-\alpha_{2}-1\right)}{\alpha_{1}-1}$ we have

$$
A_{2}:=F^{\prime}\left(\bar{X}_{2}\right)=\left(\begin{array}{cc}
0 & \beta\left(\alpha_{1}-1\right) \\
-\frac{1}{\alpha_{1}} & -\frac{\beta\left(\alpha_{1}-1\right)+\alpha_{1}}{\alpha_{1}}
\end{array}\right)
$$

where $\beta=\alpha_{2}\left(\alpha_{1}-1\right)-1>0$. The trace of A_{2} is $-\frac{\beta\left(\alpha_{1}-1\right)+\alpha_{1}}{\alpha_{1}}<0$, and the determinant of A_{2} is $\frac{\beta\left(\alpha_{1}-1\right)}{\alpha_{1}}>0$, if $\alpha_{1}>1$. So \bar{X}_{2} is a locally stable positive equilibrium.

Now at $\bar{X}_{1} \bar{N}=0$ and $\bar{C}=\alpha_{2}$.

$$
A_{1}:=F^{\prime}\left(\bar{X}_{1}\right)=\left(\begin{array}{cc}
\frac{\beta}{1+\alpha_{2}} & 0 \\
-\frac{\alpha_{2}}{1+\alpha_{2}} & -1
\end{array}\right)
$$

and thus we see that its determinant is

$$
-\frac{\beta}{1+\alpha_{2}}<0
$$

and therefore the steady state \bar{X}_{1} is unstable. It turns out that this is a saddle point.
(5) (a) This is the least squares: We have $A c=b$ with $A=1,2,3)^{T}$ and $b=(2,5,8)^{T}$. Using normal equation $A^{T} A c=A^{T} b$ which is $14 c=36$ we have $c=18 / 7$.
(b) This can be converted to an LP problem: min r s.t. $r \geq 0$ and

$$
\begin{aligned}
r-(2-c) & \geq 0, r+(2-c) \geq 0 \\
r-(5-2 c) & \geq 0, r+(5-2 c) \geq 0 \\
r-(8-3 c) & \geq 0, r+(8-3 c) \geq 0
\end{aligned}
$$

Solve is graphically we get $c=5 / 2$ and $r=1 / 2$.

