
Solution to the exam Mathematical modeling 2019-03-22

(1) The Markov chain in this exercise has the following set states

S = {Professional, Skilled, Unskilled}
with the following transition probabilities:

Professional Skilled Unskilled
Professional 0.8 0.1 0.1

Skilled 0.2 0.6 0.2
Unskilled 0.25 0.25 0.5

so that the transition matrix for this chain is

P =

 0.8 0.1 0.1
0.2 0.6 0.2
0.25 0.25 0.5


Then

P 2 =

 0.685 0.165 0.15
0.33 0.43 0.24

0.2375 0.3 0.325


and thus the probability that a randomly chosen grandson of an unskilled labourer is a
professional man is 0.375.

(2) Since (a− 1, ..., an) is an m-pattern, we have

{a1 + 1, a2 + 2, ..., an + n} = {m+ 1,m+ 2, ...,m+ n}.
It follows that

(a1 + 1) + (a2 + 2) + · · ·+ (an + n) = (m+ 1) + (m+ 2) + · · ·+ (m+ n)

⇔ a1 + a2 + · · · an = mn.

(3) Add the two equation we have d(I + S)/dt = 0 so S(t) + I(t) for all t. equals a constant
which we assume is N and it is the same as S(0) + I(0). So S = N − I. Substituting it in
the second equation yields

dI

dt
= βI(N − I)− αI

This can be written as

I ′(t) :=
dI

dt
= rI

(
1− I

K

)
where r = βN − α and K = r/β. The parameter r is often referred to as the growth rate.
We can see that r can be positive or negative, so we consider two cases.

(i) r < 0: If the growth rate is negative, r < 0, then the number of infected individ-
uals I(t) tends to 0 as t → ∞. To see this, notice that if r < 0, then K < 0. Hence,
I ′(t) ≤ rI(t). The solutions of this simple differential inequality are I(t) ≤ I(0)ert, and
they approach zero for r < 0. This implies that if r < 0, the disease gradually disappears
from the population on its own.

(ii) r > 0: The logistic equation can be solved, and in this case, we can solve it explicitly.
However it is not necessary. First we note that there are two steady states at I = 0 and
I = K. It is clear that I is either decreasing or increasing depending on the sign of I ′(t),
that is the sign of 1 − I/K since I(t) ≥ 0. Therefore I(t) increases if I < K and I(t)



decreases if I > K. So if we start with I(0) > K then I(t) will monotonically decreases
to K as t→∞ (never crosses I = K). Similarly, if we start with I(0) < K then I(t) will
monotonically increases to K as t→∞ (never crosses I = K).

Now we study the sign of the second derivative of I to decide the convexity.

d2I

dt2
= r

(
1− 2I

K

)
dI

dt
= r2

(
1− 2I

K

)(
1− I

K

)
For solutions in the interval 0 < I(t) < K, the second derivative changes sign when I
crosses I = K/2). Thus values of t such that I(t) < K/2, the second derivative of I is
positive, and I(t) is convex. For values of t for which I(t) > K/2, the second derivative of
I is negative so I(t) is concave.

(4) We start by writing N = N̂N∗, C = ĈC∗ and t = t̂t∗, and substitute in the equations we

can define Ĉ = kn, t̂ = V
F and N̂ = knF

αV k . Introduce α1 = V k
F , and α2 = C0

kn
we end up with

dN∗

dt∗
= α1

C∗

1 + C∗
N∗ −N∗

dC∗

dt∗
= − C∗

1 + C∗
N∗ − C∗ + α2

Now we drop ∗ in the equations:

dN

dt
= α1

C

1 + C
N −N

dC

dt
= − C

1 + C
N − C + α2

Define f(N,C) := α1
C

1+CN −N , g(N,C) := − C
1+CN − C + α2.

Solving f(N,C) = 0, g(N,C) = 0 yields two equilibria (steady states):

X̄1 = (0, α2), X̄2 =

(
α1

(
α2 −

1

α1 − 1

)
,

1

α1 − 1

)
An equilibrium is physically meaningful only if ≥̄0 and N̄ ≥ 0. So X̄1 is always well-defined
in this sense but not the second. The equilibrium X̄2 is well-defined and makes physical
sense only if

α1 > 1 and α2 >
1

α1 − 1
⇐⇒ α1 > 1 and α2(α1 − 1) > 1
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At any point (N,C) the Jacobian A = F ′ of F = (f(N,C), g(N,C))> is

A =

(
α1

C
1+C − 1 α1N

(1+C)2

− C
1+C − N

(1+C)2 − 1

)
In particular, at X̄2 where C̄ = 1

α1−1 , N̄ = α1(α1α2−α2−1)
α1−1 we have

A2 := F ′(X̄2) =

(
0 β(α1 − 1)

− 1
α1

−β(α1−1)+α1

α1

)
where β = α2(α1 − 1)− 1 > 0. The trace of A2 is −β(α1−1)+α1

α1
< 0, and the determinant

of A2 is β(α1−1)
α1

> 0, if α1 > 1. So X̄2 is a locally stable positive equilibrium.

Now at X̄1 N̄ = 0 and C̄ = α2.

A1 := F ′(X̄1) =

( β
1+α2

0

− α2

1+α2
−1

)
and thus we see that its determinant is

− β

1 + α2
< 0

and therefore the steady state X̄1 is unstable. It turns out that this is a saddle point.
(5) (a) This is the least squares: We have Ac = b with A = 1, 2, 3)T and b = (2, 5, 8)T . Using

normal equation ATAc = AT b which is 14c = 36 we have c = 18/7.
(b) This can be converted to an LP problem: min r s.t. r ≥ 0 and

r − (2− c) ≥ 0, r + (2− c) ≥ 0,

r − (5− 2c) ≥ 0, r + (5− 2c) ≥ 0,

r − (8− 3c) ≥ 0, r + (8− 3c) ≥ 0

Solve is graphically we get c = 5/2 and r = 1/2.
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