Examinator: Sven Raum

No calculators, books, or other resources allowed. Max score is 30 p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. (6p) Find all solutions to the differential equation $x y^{\prime}+(x-2) y=x^{4}$.
2. $(4 \mathbf{p})$ Determine the general, real solution to the system

$$
\left\{\begin{array}{cc}
x^{\prime}= & 2 x-y \\
y^{\prime}= & x
\end{array}\right\}
$$

3. $\mathbf{(7 p} \mathbf{p}$ Use the power series methods to find the solution to the initial value problem

$$
\left\{\begin{array}{c}
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 \\
y(0)=1 \\
y^{\prime}(0)=0
\end{array}\right\}
$$

4. (7p) (a) Determine all critical points of the autonomous system

$$
\left\{\begin{array}{c}
x^{\prime}=-e^{x} y \\
y^{\prime}=y^{2}-x^{2}-2 y+2 x
\end{array}\right\}
$$

(b) Investigate whether these critical points are asymptotically stable, stable or unstable.
5. (6p) Consider the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+2 u^{\prime}+u=0 \quad \text { in }[0,1], \quad u(0)+u^{\prime}(0)=0, \quad u(1)-u^{\prime}(1)=0 \tag{*}
\end{equation*}
$$

(a) Show that this boundary value problem has a unique solution.
(b) Find a Sturm-Liouville boundary value problem with the same solutions as $(*)$.

