MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Sven Raum

Tentamensskrivning i
Ordinary Differential Equations 7.5 hp

May 27, 2019

No calculators, books, or other resources allowed. Max score is 30 p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. ($\mathbf{6 p} \mathbf{p})$ Find all solutions to the differential equation $x y^{\prime}+(x-2) y=x^{4}$.

Solution. Thanks to the superposition principle it suffices to find solutions to the associated homogeneous problem and one particular solution. Assuming $x \neq 0$ we can put the homogeneous problem in the form

$$
y^{\prime}+\left(1-\frac{2}{x}\right) y=0
$$

which is solved by the functions,

$$
y_{h}(x)=e^{\int-1+\frac{2}{x} d x}=e^{-x+2 \ln x+c}=C e^{-x} x^{2}
$$

Note that the last formula makes sense for $C, x \in \mathbb{R}$. We check that it indeed solves the homogeneous problem $x y^{\prime}+(x-2) y=0$. By linearity it suffices to do so for $C=1$, which is verified through the following calculations.

$$
\begin{aligned}
x y_{h}^{\prime}(x) & =x\left(2 x e^{-x}-x^{2} e^{-x}\right)=\left(2 x^{2}-x^{3}\right) e^{-x} \\
(x-2) y_{h}(x) & =\left(x^{3}-2 x^{2}\right) e^{-x}
\end{aligned}
$$

Next, we are going to find a particular solution. The form of the differential equation suggests a polynomial ansatz. If y is a polynomial function of order n, then the left hand side $x y^{\prime}+(x-2) y$ is a polynomial of order $n+1$. So we try the ansatz

$$
y(x)=x^{3}+\alpha x^{2}+\beta x+\gamma
$$

leading to the equations

$$
\begin{array}{r}
\alpha+1=0 \\
\beta=0 \\
\gamma-\beta=0 .
\end{array}
$$

So one particular solution to the differential equation is

$$
y_{p}(x)=x^{3}-x^{2} .
$$

It follows that the general solution has the form

$$
y(x)=y_{h}(x)+y_{p}(x)=C e^{-x} x^{2}+x^{3}-x^{2}
$$

for $C, x \in \mathbb{R}$.
2. $(4 \mathbf{p})$ Determine the general, real solution to the system

$$
\left\{\begin{array}{cc}
x^{\prime}= & 2 x-y \\
y^{\prime}= & x
\end{array}\right\}
$$

Solution. It is key to observe that the given system of differential equations can be reformulated as the second order differential equation

$$
y^{\prime \prime}=2 y^{\prime}-y
$$

or equivalently

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The last differential equation can be solved by considering its characteristic equation. We have

$$
X^{2}-2 X+1=(X-1)^{2}
$$

so that a fundamental system of solutions is given by

$$
\begin{aligned}
& y_{1}(t)=e^{t} \\
& y_{2}(t)=t e^{t}
\end{aligned}
$$

Using the relation $y^{\prime}=x$, we then find

$$
\begin{aligned}
& x_{1}(t)=y_{1}^{\prime}(t)=e^{t} \\
& x_{2}(t)=y_{2}^{\prime}(t)=e^{t}+t e^{t}
\end{aligned}
$$

So the general solution of the given system of differential equations is parametrised by $c_{1}, c_{2} \in \mathbb{R}$

$$
\binom{x}{y}(t)=c_{1} e^{t}\binom{1}{1}+c_{2} e^{t}\binom{1+t}{1}
$$

3. $(\mathbf{7} \mathbf{p})$ Use the power series methods to find the solution to the initial value problem

$$
\left\{\begin{array}{c}
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 \\
y(0)=1 \\
y^{\prime}(0)=0
\end{array}\right\}
$$

Solution. The power series method uses the ansatz

$$
y(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

for real coefficients $a_{k} \in \mathbb{R}$ indexed by $k \in \mathbb{N}$. Since formal differential applies we get

$$
\begin{aligned}
y^{\prime \prime}(x) & =\sum_{k=0}^{\infty}(k+1)(k+2) a_{k+2} x^{k} \\
y^{\prime}(x) & =\sum_{k=0}^{\infty}(k+1) a_{k+1} x^{k} .
\end{aligned}
$$

Calculating the relevant terms for the differential equation leads to

$$
\begin{aligned}
x^{2} y^{\prime \prime}(x) & =\sum_{k=2}^{\infty}(k-1) k a_{k} x^{k} \\
x y^{\prime}(x) & =\sum_{k=1}^{\infty} k a_{k} x^{k} \\
x^{2} y(x) & =\sum_{k=2}^{\infty} a_{k-2} x^{k}
\end{aligned}
$$

Comparing coefficients of power series, the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ leads to the condition $a_{1}=0$ as well as the recurrence relation

$$
\underbrace{(k-1) k a_{k}+k a_{k}}_{=k^{2} a_{k}}+a_{k-2}=0
$$

which holds for all $k \geq 2$. Equivalently,

$$
a_{k+2}=-\frac{1}{(k+2)^{2}} a_{k},
$$

for all $k \in \mathbb{N}$. This recurrence relation strongly resembles the ones obtained for the differential equation $y^{\prime}=y$, whose solution is the exponential function. We thus know how to proceed, showing by induction that

$$
\begin{aligned}
a_{2 k} & =a_{0}(-1)^{k}\left(\frac{1}{2^{k} k!}\right)^{2} \\
a_{2 k+1} & =a_{1}(-1)^{k}\left(\frac{2^{k} k!}{(2 k+1)!}\right)^{2} .
\end{aligned}
$$

Finally, the initial conditions translate to

$$
\begin{aligned}
& a_{0}=y(0)=1 \\
& a_{1}=y^{\prime}(0)=0 .
\end{aligned}
$$

Note that this is compatible with the condition $a_{1}=0$ found earlier on. So we obtain the solution

$$
y(x)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{1}{2^{k} k!}\right)^{2} x^{2 k}
$$

4. (7p) (a) Determine all critical points of the autonomous system

$$
\left\{\begin{array}{c}
x^{\prime}=-e^{x} y \\
y^{\prime}=y^{2}-x^{2}-2 y+2 x
\end{array}\right\}
$$

(b) Investigate whether these critical points are asymptotically stable, stable or unstable.

Solution. We first find the critical points, answering (a). Writing

$$
\begin{aligned}
& F(x, y)=-e^{x} y \\
& G(x, y)=y^{2}-x^{2}-2 y+2 x
\end{aligned}
$$

we have to find those pairs $(x, y) \in \mathbb{R}^{2}$ satisfing $F(x, y)=0$ and $G(x, y)=0$. Starting with the latter equation, we write

$$
y^{2}-x^{2}-2 y+2 x=\left(y^{2}-2 y+1\right)-\left(x^{2}-2 x+1\right)=(y-1)^{2}-(x-1)^{2}
$$

which equals zero if and only if $|y-1|=|x-1|$. Distinguishing the signs of both sides, we end up with two families of solutions

$$
\{(x, y) \in \mathbb{R} \mid x=y\} \quad \text { and } \quad\{(x, y) \in \mathbb{R} \mid x+y=2\}
$$

Substituting $y=x$ and $y=2-x$, respectively, into $F(x, y)=0$ we find the critical points

$$
(0,0) \quad \text { and } \quad(2,0) .
$$

This answers (a).

We next solve (b) by linear approximation. To this end, we calculate the Jacobian

$$
D_{(x, y)}=\left(\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
-e^{x} y & -e^{x} \\
-2 x+2 & 2 y-2
\end{array}\right)
$$

Substituting $(x, y)=(0,0)$, we find the matrix

$$
D_{(0,0)}=\left(\begin{array}{ll}
0 & -1 \\
2 & -2
\end{array}\right)
$$

whose characteristic polynomial is
$\operatorname{det}\left(\begin{array}{cc}-X & 1 \\ 2 & -2-X\end{array}\right)=(-X)(-2-X)-(-1) 2=X^{2}+2 X+2=\left(X^{2}+2 X+1\right)+1=(X+1)^{2}+1$.
So the roots of this characteristic polynomial are exactly solutions to the equation

$$
(X+1)^{2}=-1
$$

which are $-1+i$ and $-1-i$. Since both roots have a negative real part, it follows that the critical point $(0,0)$ is asymptotically stable.
We next consider the critical point $(2,0)$. The Jacobian at this point is

$$
D_{(2,0)}=\left(\begin{array}{cc}
0 & -e^{2} \\
-2 & -2
\end{array}\right)
$$

The product of its eigenvalues equals its determinant

$$
\operatorname{det}\left(\begin{array}{cc}
0 & -e^{2} \\
-2 & -2
\end{array}\right)=0(-2)-\left(-e^{2}\right)(-2)<0
$$

while their sum is the trace

$$
\operatorname{Tr}\left(\begin{array}{cc}
0 & -e^{2} \\
-2 & -2
\end{array}\right)=0+(-2) \neq 0
$$

So the two eigenvalues of $D_{(2,0)}$ have non-zero real part, and one of them must have negative real part. So the critical point $(2,0)$ is unstable.
5. (6p) Consider the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+2 u^{\prime}+u=0 \quad \text { in }[0,1], \quad u(0)+u^{\prime}(0)=0, \quad u(1)-u^{\prime}(1)=0 \tag{*}
\end{equation*}
$$

(a) Show that this boundary value problem has a unique solution.
(b) Find a Sturm-Liouville boundary value problem with the same solutions as $(*)$.

Solution. Before addressing the questions, (a), (b) and (c), we determine a fundamental system for the differential equation $u^{\prime \prime}+2 u+u=0$. The characteristic equation $0=X^{2}+2 X+1=(X+1)^{2}$ shows that

$$
\begin{aligned}
& u_{1}(t)=e^{-t} \\
& u_{2}(t)=t e^{-t}
\end{aligned}
$$

form a fundamental system. Their derivatives are

$$
\begin{aligned}
u_{1}^{\prime}(t) & =-e^{-t} \\
u_{2}^{\prime}(t) & =e^{-t}-t e^{-t}
\end{aligned}
$$

Further the evaluations at 0 and 1 , respectively are

$$
\begin{array}{ll}
u_{1}(0)=1 & u_{2}(0)=0 \\
u_{1}^{\prime}(0)=-1 & u_{2}^{\prime}(0)=1 \\
u_{1}(1)=\frac{1}{e} & u_{2}(1)=\frac{1}{e} \\
u_{1}^{\prime}(1)=-\frac{1}{e} & u_{2}^{\prime}(1)=0 .
\end{array}
$$

We now turn to solving (a). If the solution $a u_{1}+b u_{2}$ of $u^{\prime \prime}+2 u+u=0$ satisfies $u(0)+u^{\prime}(0)=0$, then

$$
0=a u_{1}(0)+b u_{2}(0)+a u_{1}^{\prime}(0)+b u_{2}^{\prime}(0)=a \cdot 1+b \cdot 0+a \cdot(-1)+b \cdot 1=b
$$

Further, the function u_{1} satisfies

$$
u_{1}(1)-u_{1}^{\prime}(1)=\frac{1}{e}+\frac{1}{e} \neq 0
$$

So indeed the boundary value problem $(*)$ has the unique solution $u \equiv 0$.
In order to find a Sturm-Liouville boundary value problem with the same solutions as $(*)$, we recall that a general equation

$$
u^{\prime \prime}+a_{1}(x) u^{\prime}+a_{0}(x)
$$

has to be multiplied by

$$
e^{\int a_{1}(x)}
$$

In our the concrete case, we find $a_{1} \equiv 2$ and thus multiply the differential equation with $e^{2 x}$, leading to the Sturm-Liouville problem

$$
\left(e^{2 x} u^{\prime}\right)^{\prime}+e^{2 x} u=0 \quad \text { in }[0,1], \quad u(0)+u^{\prime}(0)=0, \quad u(1)-u^{\prime}(1)=0
$$

