MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Sven Raum

Tentamensskrivning i
Ordinary Differential Equations

No calculators, books, or other resources allowed. Max score is 30p; grade of E guaranteed at 15p. Appropriate amount of details required for full marks.

1. (10p) Consider the system of linear differential equations

$$
\binom{y_{1}}{y_{2}}^{\prime}=\left(\begin{array}{ll}
1 & 1 \tag{*}\\
0 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}+\binom{e^{x}}{0}
$$

and solve the following questions.
(a) Find all solutions to the differential equation $y^{\prime}=y+e^{t}$.
(b) Find a fundamental matrix of the homogeneous system associated with (*).
(c) Calculate the Wronskian associated with the fundamental matrix you found.
(d) Apply the Duhamel formula to find a particular solution of $(*)$.

Solution.

(a) For linear first order differential equations, there are explicit formulae for a solution. We have $y^{\prime}=a(t) y+b(t)$ with $a(t)=1$ and $b(t)=e^{t}$. The general solution of this equation is given by

$$
y(t)=c \exp \left(\int_{0}^{t} a(s) d s\right)+\left(\int_{0}^{t} b(\tau) \exp \left(-\int_{0}^{\tau} a(s) d s\right) d \tau\right)\left(\exp \left(\int_{0}^{t} a(s) d s\right)\right)
$$

We calculate the different terms appearing in the this equation:

$$
\exp \left(\int_{0}^{t} a(s) d s\right)=\exp \left(\int_{0}^{t} 1 d s\right)=\exp (t)
$$

and

$$
\int_{0}^{t} b(\tau) \exp \left(-\int_{0}^{\tau} a(s) d s\right) d \tau=\int_{0}^{t} e^{\tau} e^{-\tau} d \tau=t
$$

It follows that the general solution of $y^{\prime}=y+e^{t}$ is

$$
y(t)=c e^{t}+t e^{t}
$$

for a real number c.
(b) The homogeneous system of equations associated with (*) can be written as

$$
\begin{gathered}
y_{1}^{\prime}=y_{1}+y_{2} \\
y_{2}^{\prime}=y_{2}
\end{gathered}
$$

The second equation has the general solution $y_{2}(x)=D e^{x}$ for a real number D. Plugging this into the first equation, we obtain $y_{1}^{\prime}=y_{1}+D e^{x}$, whose general solution can be obtained as in the last item as $y_{1}(x)=C e^{x}+D x e^{x}$ for real numbers C and D. So a fundamental matrix of (*) is given by

$$
\left(\begin{array}{cc}
e^{x} & x e^{x} \\
0 & e^{x}
\end{array}\right)
$$

(c) The Wronskian is the determinant of the fundamental matrix:

$$
\operatorname{det}\left(\begin{array}{cc}
e^{x} & x e^{x} \tag{1}\\
0 & e^{x}
\end{array}\right)=e^{x} e^{x}-x e^{x} 0=e^{2 x}
$$

(d) The Duhamel formula describes a particular solution of $(*)$ as

$$
\begin{equation*}
y_{p}(x)=\phi(x) \int_{0}^{x} \phi^{-1}(s) f(x) \tag{2}
\end{equation*}
$$

where ϕ is the fundamental matrix, ϕ^{-1} is the inverse of the fundamental matrix and $f(x)$ is the inhomogeneous term of $(*)$. Concretely, these functions are

$$
\begin{gathered}
\phi(x)=\left(\begin{array}{cc}
e^{x} & x e^{x} \\
0 & e^{x}
\end{array}\right) \\
\phi^{-1}(x)=\left(\begin{array}{cc}
e^{x} & x e^{x} \\
0 & e^{x}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
e^{-x} & -x e^{-x} \\
0 & e^{-x}
\end{array}\right) \\
f(x)=\binom{e^{x}}{0} .
\end{gathered}
$$

Plugging these terms into the Duhamel formula, we obtain

$$
\begin{aligned}
y_{p}(x) & =\left(\begin{array}{cc}
e^{x} & x e^{x} \\
0 & e^{x}
\end{array}\right) \int_{0}^{x}\left(\begin{array}{cc}
e^{-s} & -x e^{-s} \\
0 & e^{-s}
\end{array}\right)\binom{e^{s}}{0} d s \\
& =\left(\begin{array}{cc}
e^{x} & x e^{x} \\
0 & e^{x}
\end{array}\right) \int_{0}^{x}\binom{1}{0} d s \\
& =\left(\begin{array}{cc}
e^{x} & x e^{x} \\
0 & e^{x}
\end{array}\right)\binom{x}{0} \\
& =\binom{x e^{x}}{0} .
\end{aligned}
$$

2. (8p) Use the Laplace transform methods to find the solution to the initial value problem

$$
\left\{\begin{array}{c}
y^{\prime \prime}+y=x \\
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right\}
$$

Solution. We apply the Laplace transform to both sides of the given differential equation, simplify and obtain an expression for the Laplace transform of the solution of the initial value problem:

$$
\begin{equation*}
L\left[y^{\prime \prime}+y\right](p)=L[x](p) \tag{3}
\end{equation*}
$$

The right-hand side of this equation is

$$
L[x](p)=\frac{1}{p^{2}}
$$

and its left-hand side can be simplified using the initial conditions

$$
L\left[y^{\prime \prime}+y\right](p)=\left(p^{2} L[y](p)-p y^{\prime}(0)-y(0)\right)+L[y]=p^{2} L[y](p)+L[y](p)=\left(p^{2}+1\right) L[y](p)
$$

Plugging these calculations into the equation (3), we obtain

$$
\left(p^{2}+1\right) L[y](p)=\frac{1}{p^{2}}
$$

Solving this equation for $L[y](p)$ and writing it in terms of known Laplace transforms gives

$$
\begin{aligned}
L[y](p) & =\frac{1}{p^{2}\left(p^{2}+1\right)} \\
& =\frac{p^{2}+1}{p^{2}\left(p^{2}+1\right)}+\frac{-p^{2}}{p^{2}\left(p^{2}+1\right)} \\
& =\frac{1}{p^{2}}-\frac{1}{p^{2}+1} \\
& =L[x](p)-L[\sin x](p) .
\end{aligned}
$$

So we find the candidate solution $y(x)=x-\sin (x)$. Indeed, we have

$$
y^{\prime \prime}(x)+y(x)=\sin (x)+x-\sin (x)=x .
$$

3. (6p)

(a) Consider a general autonomous system of differential equations

$$
\left\{\begin{array}{l}
x^{\prime}=F(x, y) \tag{**}\\
y^{\prime}=G(x, y)
\end{array}\right\}
$$

and define the following terms:

- a "critical point" of the system,
- a "stable" critical point of the system, and
- an "asymptotically stable" critical point of the system.
(b) Consider the autonomous system

$$
\left\{\begin{array}{c}
x^{\prime}=\sin (x)+\sin (y) \tag{***}\\
y^{\prime}=(x+1)(y-1)+1
\end{array}\right\}
$$

Find all its critical points and determine for each of them whether it is stable, asymptotically stable or unstable.

Solution.

(a) We define the required terms:

- A point $\binom{x_{0}}{y_{0}}$ is a critical point of $(* *)$ if

$$
\left\{\begin{array}{l}
x \equiv x_{0} \\
y \equiv y_{0}
\end{array}\right\}
$$

is one of its solutions.

- A critical point

$$
\binom{x_{0}}{y_{0}}
$$

of $(* *)$ is stable if it satisfies the following condition: for all $r>0$, there is a neighbourhood $\mathcal{U} \subset \mathbb{R}^{2}$ of $\binom{x_{0}}{y_{0}}$ such that every solution $\binom{x}{y}$ of $(* *)$ with initial conditions $x(0)=x_{1} \in \mathcal{U}$ and $y(0)=y_{1} \in \mathcal{U}$ satisfies

$$
\forall t \geq 0:\left\|\binom{x(t)}{y(t)}-\binom{x_{0}}{y_{0}}\right\|<r .
$$

- A critical point

$$
\binom{x_{0}}{y_{0}}
$$

of $(* *)$ is asymptotically stable if it satisfies the following condition: there is a neighbourhood $\mathcal{U} \subset \mathbb{R}^{2}$ of $\binom{x_{0}}{y_{0}}$ such that every solution $\binom{x}{y}$ of $(* *)$ with initial conditions $x(0)=x_{1} \in \mathcal{U}$ and $y(0)=y_{1} \in \mathcal{U}$ satisfies

$$
\lim _{t \rightarrow \infty}\binom{x(t)}{y(t)}=\binom{x_{0}}{y_{0}} .
$$

- Critical points of $(* * *)$ are exactly those $\binom{x}{y}$ such that

$$
\sin (x)+\sin (y)=0 \quad \text { and } \quad(x+1)(y-1)+1=0
$$

The former equation, rewritten as

$$
\sin (x)=-\sin (y)=\sin (-y)
$$

implies $y \in-x+n \pi$ for some $n \in \pi$. Plugging this into the second equation, we first find that $n=0$ and then $x=y=0$.
We investigate stability of the critical point $\binom{0}{0}$ by linearisation. The Jacobian of $(* * *)$ is

$$
\left(\begin{array}{cc}
\cos (x) & \cos (y) \\
y-1 & x+1
\end{array}\right)
$$

providing us with the linear approximation

$$
\left(\begin{array}{cc}
\cos (0) & \cos (0) \\
0-1 & 0+1
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} .
$$

The eigenvalues $1+i$ and $1-i$ of the coefficient matrix can be determined by calculating the roots of its characteristic polynomial. Both eigenvalues have a strictly positive real part, so that the critical point is unstable.
4. (8p)
(a) Provide an example of a 2 nd order boundary value problem with von Neumann type boundary conditions that does not have a unique solution.
(b) State the Fredholm alternative for Sturm-Liouville type boundary value problems.
(c) Rewrite the differential expression $L u=u^{\prime \prime}-2 u^{\prime}+u$ in the form of a Sturm-Liouvile problem and find a fundamental solution that is not a Green function.

Solution.

(a) The BVP $u^{\prime \prime}=0$ with von Neumann type boundary conditions $u^{\prime}(0)=0=u^{\prime}(1)$ is solved by the functions $f_{c}:[0,1] \rightarrow \mathbb{R}, f_{c}(x) \equiv c$ for all $c \in \mathbb{R}$.
(b) The Fredholm alternative for a Sturm-Liouville problem

$$
\begin{gathered}
L u=\left(p(x) u^{\prime}\right)^{\prime}+q(x) \\
R_{1} u=\alpha_{1} u(a)+\alpha_{2} p(a) u^{\prime}(a) \\
R_{2} u=\beta_{1} u(b)+\beta_{2} p(b) u^{\prime}(b)
\end{gathered}
$$

says that exactly one of the following two statements is true:

- Either the system

$$
\begin{aligned}
L u & =g \\
R_{1} u & =\eta_{1} \\
R_{2} u & =\eta_{2}
\end{aligned}
$$

admits a unique solution for every $g \in \mathrm{C}([a, b])$ and every $\eta_{1}, \eta_{2} \in \mathbb{R}$, or

- the system

$$
\begin{gathered}
L u=0 \\
R_{1} u=0 \\
R_{2} u=0
\end{gathered}
$$

admits a non-zero solution.
(c) In order to rewrite the differential expression $u^{\prime \prime}-2 u^{\prime}+u$ in the form of a Sturm-Liouville problem we have to multiply with

$$
p(x)=e^{\int_{0}^{x}-2 d s}=e^{-2 x}
$$

and obtain

$$
e^{-2 x} u^{\prime \prime}-2 e^{-2 x} u^{\prime}+e^{-2 x} u=\left(e^{-2 x} u^{\prime}\right)^{\prime}+e^{-2 x} u
$$

Say the problem is posed on an interval $[a, b]$. Then a fundamental solution $\Gamma:[a, b] \times[a, b] \rightarrow \mathbb{R}$ is given by

$$
\Gamma(x, \xi)= \begin{cases}u_{\xi}(x) & \text { if } a \leq \xi \leq x \leq b \\ 0 & \text { if } a \leq x \leq \xi \leq b\end{cases}
$$

where u_{ξ} is the unique solution to the initial value problem

$$
\begin{gathered}
L u=0 \\
u(\xi)=0 \\
u^{\prime}(\xi)=\frac{1}{p(\xi)} .
\end{gathered}
$$

Let us find these solutions: a fundamental system for $L u=0$ is given by e^{x} and $x e^{x}$. So the initial conditions for

$$
u_{\xi}(x)=a e^{x}+b x e^{x}
$$

give rise to the equations

$$
\begin{gathered}
a e^{\xi}+b \xi e^{\xi}=0 \\
a e^{\xi}+b \xi e^{\xi}+b e^{\xi}=e^{2 \xi}
\end{gathered}
$$

Working out these conditions, we obtain

$$
\begin{gathered}
a=-\xi e^{\xi} \\
b=e^{\xi}
\end{gathered}
$$

So a fundamental solution of the Sturm-Liouville problem is

$$
\Gamma(x, \xi)= \begin{cases}-\xi e^{\xi} e^{x}+e^{\xi} x e^{x} & \text { if } a \leq \xi \leq x \leq b \\ 0 & \text { if } a \leq x \leq \xi \leq b\end{cases}
$$

This fundamental solution is not a Green function, since it is not symmetric.

