MATEMATISKA INSTITUTIONEN	Exam in
STOCKHOLMS UNIVERSITET	Ordinary differential equations
Avd. Matematik	7.5 hp
Examiner: Sven Raum	25 th May 2020
Instructor: Corentin Léna	$9: 00$ to $16: 00$

Please read carefully the general instructions:

- This is an open book exam.
- In all your solutions show your reasoning and calculation, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- Upload the exam on the course page before 16 o'clock
- A maximum score of 100 points can be achieved. A score of at least 50 points will ensure a pass grade if item 0 is completed.

0 . Mandatory, but gives no points.

The PDF document that contains your home exam should start by you writing the following sentence:
I, the author of this document, hereby guarantee that I have produced these solutions to this home exam without the assistance of any other person. This means that I have for example not discussed the solutions or the home exam with any other person.

1. Systems of differential equations (20 points)

Find the general solution of the system of differential equations

$$
X^{\prime}=A X
$$

where A is the matrix

$$
\left(\begin{array}{ccc}
7 & 1 & \sqrt{2} \\
1 & 7 & -\sqrt{2} \\
\sqrt{2} & -\sqrt{2} & 6
\end{array}\right)
$$

2. Higher order differential equations (20 points)

Solve the differential equation

$$
\begin{gathered}
f^{\prime \prime}(x)-f^{\prime}(x)-2 f(x)=6 x e^{-x} \\
f(0)=0 \\
f^{\prime}(0)=-\frac{2}{3}
\end{gathered}
$$

3. Power series method (20 points)

Solve the following differential equation by means of the power series method and express its solution as an elementary function.

$$
\begin{gathered}
-x(x+1)^{2} f^{\prime}(x)+(x+1)^{2} f(x)=x^{2} \\
f(0)=0 \\
f(1)=\frac{1}{2} .
\end{gathered}
$$

4. Autonomous systems of differential equations (20 points)

For the following autonomous system, find all equilibrium points and determine whether they are asymptotically stable, stable or unstable

$$
\left\{\begin{array}{c}
x^{\prime}=\sin x \cdot \cos y \\
y^{\prime}=x+y
\end{array}\right\}
$$

5. Boundary value problems (20 points)

Consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}-2 x u^{\prime}+2 n u=0 \tag{*}
\end{equation*}
$$

for a parameter $n \in \mathbb{N}$.
(a) Rewrite the differential equation in Sturm-Liouville form.
(b) Find a solution H_{0} for the boundary value problem

$$
\begin{gathered}
u^{\prime \prime}-2 x u^{\prime}=0 \\
H_{0}^{\prime}(0)=0=H_{0}^{\prime}(1) .
\end{gathered}
$$

(c) Show that if H_{n} is a solution of $(*)$ for the parameters n, then there is a solution H_{n-1} for the parameter $n-1$ that satisfies $H_{n}^{\prime}=n H_{n-1}$.
(d) Use the statement of the previous item to find solutions $H_{1}, H_{2}, H_{3}, H_{4}$ for the differential equation (*) with parameters $n=1,2,3,4$.

