MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examiner: Sven Raum Instructor: Corentin Léna

1. Systems of differential equations (20 points)

Find the general solution of the system of differential equations

$$X' = AX$$

where A is the matrix

$$\begin{pmatrix} 7 & 1 & \sqrt{2} \\ 1 & 7 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 6 \end{pmatrix}.$$

Indication of solution. The matrix A is diagonalisable and after a calculation we find that its eigenvectors are

$$\begin{pmatrix} 1\\ -1\\ -\sqrt{2} \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ \frac{\sqrt{2}}{2} \end{pmatrix} \text{ and } \begin{pmatrix} 0\\ 1\\ -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

Their eigenvalues are 4,8 and 8, respectively. As a consequence the general solution to X' = AX is given by

$$X = e^{t4} \begin{pmatrix} 1 \\ -1 \\ -\sqrt{2} \end{pmatrix} + e^{t8} \begin{pmatrix} 1 \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix} + e^{t8} \begin{pmatrix} 0 \\ 1 \\ -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

2. Higher order differential equations (20 points) Solve the differential equation

$$f''(x) - f'(x) - 2f(x) = 6xe^{-x}$$

$$f(0) = 0$$

$$f'(0) = -\frac{2}{3}.$$

Indication of solution. We find the general solution to the homogeneous equation f''(x) - f'(x) - 2f(x) = 0 and then use an well-chosen Ansatz to solve the inhomogeneous problem, possibly taking resonance cases into account.

The characteristic polynomial associated with our homogeneous equation is $X^2 - X - 2X = (x+1)(x-2)$, so that a fundamental system of solutions for the homogeneous problem is

$$\begin{aligned} x \mapsto e^{-x} \\ x \mapsto e^{2x}. \end{aligned}$$

Based on the term $6xe^{-x}$ we make the Ansatz

$$f(x) = cxe^{-x} + dx^2e^{-x}.$$

Taking derivatives of f and fitting constants, we find that indeed a solution to our equation can be found with the constants $c = -\frac{2}{3}$ and d = -1. The initial conditions are satisfied as well.

Solutions to Ordinary differential equations written on 25th May 2020

3. Power series method (20 points)

Solve the following differential equation by means of the power series method and express its solution as an elementary function.

$$\begin{aligned} -x(x+1)^2 f'(x) + (x+1)^2 f(x) &= x^2 \\ f(0) &= 0 \\ f(1) &= \frac{1}{2}. \end{aligned}$$

Indication of solution. We start by making the Ansatz that f is analytic with power series expansion

$$f(x) = \sum_{n \in \mathbb{N}} a_n x^n.$$

Then

$$f'(x) = \sum_{n \in \mathbb{N}} (n+1)a_{n+1}x^n.$$

Further the equation given in the question is equivalent to

$$-xf'(x) + f(x) = \left(\frac{x}{x+1}\right)^2.$$
(1)

We find the power series expansion of $(\frac{x}{x+1})^2$ by first considering $g(x) = \frac{1}{x+1}$. Taking a few derivatives, we guess that

$$g^{(n)}(x) = (-1)^n \cdot n! \cdot \frac{1}{x+1}^{n+1}$$

which is subsequently proven by induction. Consequently,

$$g(x) = \sum_{n \in \mathbb{N}} b_n x^n$$
 with $b_n = \frac{g^{(n)}(0)}{n!} = (-1)^n$

Next note that $-g'(x) = \frac{1}{(x+1)^2}$, so that

$$\frac{1}{(x+1)^2} = \sum_{n \in \mathbb{N}} c_n \qquad \text{with } n! c_n = -(n+1)! b_{n+1}$$

Explicitly, we find $c_n = (-1)^n (n+1)$. Putting this together with a degree shift, we find the right-hand side of (1).

$$\left(\frac{x}{x+1}\right)^2 = \sum_{n \in \mathbb{N}_{\ge 1}} (-1)^n (n-1) x^n.$$

Let us also explicitly describe the power series expansion of the left-hand side of (1).

$$-xf'(x) + f(x) = a_0 + \sum_{n \in \mathbb{N}_{\ge 1}} (1-n)a_n x^n.$$

Comparing coefficients we find that

$$a_0 = 0$$

 $(-1)^n (n-1) = (1-n)a_n$ for all $n \ge 1$.

The second line can be simplified to $a_n = (-1)^{n+1}$ for $n \ge 2$. Note that for n = 1 there is no condition on a_1 . So the power series expansion of f is

$$f(x) = a_1 x + \sum_{n \in \mathbb{N}_{\ge 2}} (-1)^{n+1} x^n$$

We cannot directly make use of the initial condition f(1), since the radius of convergence of the right hand side equals 1. So we first have to express f as a function. So let us write f is a more regular form first.

$$f(x) = (a_1 - 1)x + \sum_{n \in \mathbb{N}_{\ge 1}} (-1)^{n+1} x^n.$$

We recognise its expression as close to the one of $\frac{1}{x+1}$ and obtain

$$\frac{x}{x+1} = x \sum_{n \in \mathbb{N}} (-1)^n x^n = \sum_{n \in \mathbb{N}} (-1)^n x^{n+1} = f(x) - (a_1 - 1)x.$$

Substituting x = 1 as well as $f(1) = \frac{1}{2}$ in the first and last term of this equation, we find that $a_1 = 1$. So indeed $f(x) = \frac{x}{x+1}$. Note that the initial condition f(0) = 0 is automatically satisfied by this solution.

4. Autonomous systems of differential equations (20 points)

For the following autonomous system, find all equilibrium points and determine whether they are asymptotically stable, stable or unstable

$$\begin{cases} x' = \sin x \cdot \cos y \\ y' = x + y \end{cases}$$

Indication of solution. Writing

$$F(x,y) = \begin{pmatrix} \sin x \cdot \cos y \\ x+y \end{pmatrix}$$

the equilibrium points can be found by solving F(x, y) = 0. The solutions to this equation are exactly of the form

$$y = -x$$
 for $x \in \frac{\pi}{2}\mathbb{Z}$.

Since all equilibrium points are isolated, we can use linearisation to understand their stability properties. We write

$$A = A(x, y) = \begin{pmatrix} \cos x \cdot \cos y & -\sin x \cdot \sin y \\ 1 & 1 \end{pmatrix}$$

for the Jacobian of F. We have to find the eigenvalues of A. We have

$$\det A = \cos x \cos y + \sin x \sin y$$

which simplifies under the assumption y = -x to

$$\cos^2 x - \sin^2 x = 1 + 2\sin^2 x.$$

We will next plug in values $x \in \frac{\pi}{2}\mathbb{Z}$. Here we distinguish two cases. If $x \in \pi\mathbb{Z}$, then

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

and thus det A = 1 and $\operatorname{Tr} A = 2$, telling us that (x, -x) is an unstable equilibrium point. If $x \in \pi \mathbb{Z} + \frac{\pi}{2}$, then

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

and thus det A = -1 and Tr = 1, telling us that also here (x, -x) is an unstable equilibrium point.

5. Boundary value problems (20 points)

Consider the differential equation

$$u'' - 2xu' + 2nu = 0 \tag{(*)}$$

for a parameter $n \in \mathbb{N}$.

- (a) Rewrite the differential equation in Sturm-Liouville form.
- (b) Find a solution H_0 for the boundary value problem

$$u'' - 2xu' = 0,$$

 $H'_0(0) = 0 = H'_0(1)$

- (c) Show that if H_n is a solution of (*) for the parameters n, then there is a solution H_{n-1} for the parameter n-1 that satisfies $H'_n = nH_{n-1}$.
- (d) Use the statement of the previous item to find solutions H_1, H_2, H_3, H_4 for the differential equation (*) with parameters n = 1, 2, 3, 4.

Indication of solution.

- (a) The SL-form of this equation is $(e^{-x^2}u')' + 2ne^{-x^2}u = 0.$
- (b) The constant function $u \equiv 1$ is a solution.
- (c) If H_n is a solution of (*) for the parameter $n \ge 1$, then we have to check that

$$H_{n-1} = \frac{1}{n}H'_n$$

defines a solution for the equation with parameter n-1. We use the fact that

$$H_n'' = 2xH_n' - 2nH_n$$

combined with the product rule, to find that

$$H_{n-1}'' - 2xH_{n-1}' + 2(n-1)H_{n-1} = \frac{1}{n}H_n''' - \frac{1}{n}2xH_n'' + 2(n-1)\frac{1}{n}H_n'$$

= $\frac{1}{n}(2xH_n'' + 2H_n') - \frac{1}{n}2nH_n' - \frac{1}{n}2xH_n'' + \frac{2(n-1)}{n}H_n' = 0.$

(d) We will find the asked solutions recursively. From the previous item, our task to find H_n from H_{n-1} consists in fixing a constant in the primitive equation

$$H_n = n \int H_{n-1} + C.$$

Recall that H_0 is a solution to (*) for the parameter n = 0. Thus

$$H_1 = 1 \cdot \int 1 \mathrm{d}x + C = x + C$$

for some $C \in \mathbb{R}$. Calculating $H'_1(x) = C$, $H''_1(x) = 0$ and plugging these into (*), we find

$$0 = 0 - 2x \cdot 1 + 2(x + C).$$

This implies C = 0 and thus $H_1(x) = x$. Similarly we find that

$$H_2(x) = x^2 - \frac{1}{2}$$
$$H_3(x) = x^3 - \frac{3}{2}x$$
$$H_4(x) = x^4 - 3x^2 + \frac{3}{4}$$